|
LCFIVertex
0.7.2
|
Utility classes for the vertex package. More...
Classes | |
| class | HelixRep |
| Multi-Perpose 3 Vector. More... | |
| class | SymMatrix2x2 |
| class | Matrix2x2 |
| class | Matrix3x3 |
| class | Matrix5x5 |
| class | SymMatrix6x6 |
| class | Matrix6x6 |
| class | SymMatrix5x5 |
| class | SymMatrix3x3 |
| class | bin |
| class | histogram_data |
| class | efficiency_purity |
| class | Vector3 |
| Multi-Perpose 3 Vector. More... | |
Enumerations | |
| enum | Projection { ThreeD, RPhi, Z, ThreeD, RPhi, Z } |
| Projection Type. | |
| enum | Projection { ThreeD, RPhi, Z, ThreeD, RPhi, Z } |
| Projection Type. | |
Functions | |
| template<class charT , class traits > | |
| std::basic_ostream< charT, traits > & | operator<< (std::basic_ostream< charT, traits > &os, const HelixRep &H) |
| double | determinant (Matrix3x3 input) |
| SymMatrix5x5 | InvertMatrix5x5 (SymMatrix5x5 input) |
| Matrix3x3 | InvertMatrix (Matrix3x3 input) |
| Matrix2x2 | InvertMatrix2 (Matrix2x2 input) |
| string | makeString (const double param) |
| string | makeString (const void *param) |
| string | makeString (const bool param) |
| string | makeString (const string param) |
| double | gamSer (double a, double x) |
| Incomplete gamma function P(a,x) via its series representation. | |
| double | gamCf (double a, double x) |
| Computation of the incomplete gamma function P(a,x) via its continued fraction representation. | |
| double | gamma (double a, double x) |
| Computation of the upper incomplete gamma function P(a,x) | |
| double | lnGamma (double z) |
| Computation of ln[gamma(z)] for all z>0. More... | |
| double | prob (double ChiSquared, double DegreesOfFreedom) |
| Calculate probability from Chi Squared and Degrees of freedom. | |
Utility classes for the vertex package.
| double vertex_lcfi::util::lnGamma | ( | double | z | ) |
Computation of ln[gamma(z)] for all z>0.
The algorithm is based on the article by C.Lanczos [1] as denoted in Numerical Recipes 2nd ed. on p. 207 (W.H.Press et al.). [1] C.Lanczos, SIAM Journal of Numerical Analysis B1 (1964), 86. The accuracy of the result is better than 2e-10.
1.8.6