EUDET-Memo-2008-31

A Modular TPC Endplate Description for GEAR

Martin Killenberg? Stephen Turnbullf

January 5, 2009

Abstract

We report on an extension of the TPCParameters class, which describes the end
plate of a TPC in the GEometry API for Reconstruction toolkit (GEAR). The
interface is now able do describe an end plate made up of several readout modules
instead of only one monolithic pad plane.

*University of Bonn, Bonn, Germany
fCarleton University, Ottawa, ON, Canada



EUDET-Memo-2008-31

1 Introduction

Up to now the TPC description in GEAR [1] had one pad plane at the end plate of the
TPC. For full detector simulations a circular geometry was used, being a full circle with
inner and outer radius. For small R&D prototypes a rectangular layout with flexible
pad sizes is available.

The large LC-TPC prototype, which has been set up in the context of EUDET, has a
more realistic end plate design where the end cap is made up of several modules. Each
module can have a different pad geometry. So GEAR had to be extended to be able
to describe modules which are only sectors of a circle and the different modules being
rotated and translated with respect to the global coordinate origin.

2 Design Considerations

In GEAR the TPC is described by the TPCParameters class. In the previous versions it
contained the overall TPC properties like the length of the drift volume and a pointer to
the pad layout. The pad layout is derived from the PadRowLayout2D base class, which
allows to describe a layout with pads being arranged in rows. As it was the only pad
plane it defined the global coordinate system. With the new modular approach each of
the modules will have its own, local coordinate system.

There were two main requirements for the extension:

1. The code should be 100% backward compatible, so the existing programmes do
not break.

2. All local coordinates of the modules are translated to the global coordinate system
so the user code does not have to handle different coordinate systems and perform
the coordinate transformations.

For this reason a new class called TPCModule was introduced. It is derived from the
PadRowLayout2D, so it provides the same functionality as the pad layout implementa-
tions. It contains one of these implementations and knows how much the pad layout
has been shifted and rotated against the global origin. The module’s main functionality
is to translate the pad layout’s local coordinates to global coordinates. All other func-
tionality concerning the arrangement of the pads is directly passed on to the pad layout
implementation, so all the existing functionality is still available without having to be
reimplemented.

3 The TPCModule

As already mentioned the TPCModule is derived from PadRowLayout2D to provide all
its functionality and for backward compatibility. The user code does not have to care
whether it directly uses an implementation of the pad layout, which only knows about
one coordinate system, or if it uses a module. The module contains one of the palpable



EUDET-Memo-2008-31

implementations (currently RectangularPadRowLayout, FixedPadSizeDiskLayout and
FixedPadAngleDiskLayout are available).

Each module has a unique module ID. As the electronics in the prototype setup can
vary from module to module, each module has its own readout frequency. The module
can be rotated by an angle with respect to the global coordinate system. Its origin
can by shifted with respect to the global origin, the offset is given in cartesian or polar
coordinates, depending on the TPC’s coordinate system. All these values can be queried
using the respective get functions (see Table 1).

A border around the pad plane can be defined to enlarge the active area of the module.
This is for instance needed for pad planes with resistive coating, where charge arriving
on the resistive layer near the pads still produces a signal in the pads. Or in simulations,
where the diffusion can make charges produced near the pad plane end up on one of the
pads. getModuleExtent () returns this enlarged area, where getDistanceToModule ()
gets the closest distance to it and isInsideModule() tests whether the given global
coordinates are within the module extent.

Although the interface usually provides only global coordinates, it sometimes can be
useful to have access to the local information. Some calculations can easier be performed
in local coordinates, and an event display has a better performance calculating the coor-
dinate transformations on the GPU than on the main processor. For this reason the mod-
ule allows access to the underlying pad layout (getLocalPadLayout () ) and the transfor-
mation functions from global to local coordinates and vice versa (globalToLocal () and
localToGlobal()). Also the extended module area can be retrieved in local coordinates
using getLocalModuleExtent ().

The member functions derived from PadRowLayout2D can be divided into two sections.
The first group directly queries the instance of the pad layout and returns its value.
These are the geometry specific functions which do not contain coordinate information,
like number of pads, shape of the pads etc.

The second group of derived functions handles coordinates and has to perform the co-
ordinate transformations. All coordinates of the functions derived from PadRowLayout2D
are global coordinates, which are translated to local coordinates and subsequently the
required information is retrieved from the local pad layout. If the pad layout returns
local coordinates they are tranformed into the global coordinate system before being
passed on by the module.

A special case is the plane extent. It gives the maximum and minimum z- and y-
coordinates (or r-g-coordinates for polar coordinates) the module can occupy. This
does not necessarily mean that the complete area is covered with pads but that there
are no pads outside this area. For polar coordinate systems this is a sector of a circular
ring, which is a good description of the geometry if the coordinate origin of the module
is in the global origin. But if the module is rotated and translated, the global plane
extent is no longer an adequate description of the module geometry. However, the plane
extend limits the area in which the sensitive area can be. This is especially useful in
simulation and digitisation because signals outside this area do not have to be processed
at all, which improves performance. Figure 1 gives examples for a circular module in
global polar and global cartesian coordinates.



EUDET-Memo-2008-31

TPCModule

Module specific

int

double
Vector2D &
double

int
bool

double

std: :vector<double> &
double

bool

Vector2D

Vector2D
PadRowLayout2D &

std: :vector<double> &

getModuleID()
getReadoutFrequency ()
get0ffset )
getAngle()

getTPCCoordinateType ()
isOverlapping ()

getBorderWidth ()
getModuleExtent ()
getDistanceToModule ()
isInsideModule()

globalToLocal (double cO, double cl)
localToGlobal (double cO, double c1)
getLocalPadLayout ()
getLocalModuleExtent ()

Derived from PadRowLAyout2D (directly passed to instance)

int
int
int
int
int
double
double
double
std::vector<int> &
int
int
int
int
int

getPadLayoutImplType ()
getCoordinateType ()
getPadShape ()

getNPads ()

getNRows ()

getRowHeight (int rowNumber)
getPadWidth(int padIndex)
getPadHeight (int padIndex)
getPadsInRow(int rowNumber)
getRowNumber (int padIndex)
getPadNumber (int padIndex)
getPadIndex(int rowNumber, int padNumber)
getRightNeigbour (int padIndex)
getLeftNeighbour (int padIndex)

Derived from PadRowLayout2D (coordinate transformation)

Vector2D

std: :vector<double> &
int

bool

bool

double

getPadCenter (int padIndex)

getPlaneExtent ()

getNearestPad(double cO, double c1)
isInsidePad(double c0O, double cl, int padIndex)
isInsidePad(double cO, double c1)
getDistanceToPad(double cO, double cl, int padIndex)

Table 1: The member functions of TPCModule.




EUDET-Memo-2008-31

250 . 250
200 X T 200
150 '\ /\ 150 /
fLl N/ N T /
- \, ,/‘h -
50 b \ i / . 50 // .
0 0
50 H 50 H
100 50 0 50 100 150 200 400 50 0 50 100 150 200
= [mm] = [mm]

Figure 1: The global plane extents (red) of a wedge shaped module (blue) in global polar
and global cartesian coordinates.

4 Changes in TPCParameters

TPCParameters now contains a vector with modules instead of a single pad layout.
Its functionality has been extended to handle the modules. Table 2 shows the member
functions of the TPCParameters class. getMaxDriftLength() and getDriftVelocity()
work like in the previous version, they are global TPC parameters. Now there might
be more than one pad layout, each with its own readout frequency. If there is only
one module, getPadLayout () and getReadoutFrequency() return the module (which
is a pad layout) and its readout frequency, respectively. As the module is returned it is
ensured that only global coordinates are passed to the user code. In case there is more
than one module an exception is thrown. This is to prevent the old code from producing
inaccurate results by not taking into account all modules.

The TPC can have a cartesian or a polar coordinate system independently from the
modules. This information can be retrieved with getCoordinateType().

There is a block of member functions to handle the modules. One can either ac-
cess the modules by their global module ID (getModule(int ID)), query the number
of modules (getNModules()) or retrieve a std::vector with pointers to all modules
(getModules()).

The isInsideModule(), isInsidePad(), getNearestModule(), getNearestPad(),
and getPlaneExtent () functions are convenience functions which loop all modules and
use their respective member functions to determine the requested information. As the
pad index is only unique within one module, the GlobalPadIndex helper class has been
introduced which contains the module ID and the local pad index.



EUDET-Memo-2008-31

TPCParameters
Hitherto existing
double getMaxDriftLength()
double getDriftVelocity()
PadRowLayout2D & getPadLayout ()
double getReadoutFrequency()

New

int

TPCModule &
int
std: :vector<TPCModule *> &

bool

bool

TPCModule &
GlobalPadIndex

std: :vector<double> &

getCoordinateType ()

getModule(int ID)
getNModules ()
getModules ()

isInsideModule(double c1, double c2)
isInsidePad(double cl1, double c2)
getNearestModule(double cl, double c2)
getNearestPad(double c1, double c2)
getPlaneExtent ()

Table 2: The member functions of the TPCParameters class.

5 The XML Syntax

In order to describe the modules, the XML syntax had to be extended. Listing 1 shows
a simple example with only one module. The TPCParameters detector type has the new
tag <coordinateType> which can have the values cartesian or polar and describes
the global coordinate system of the end plate.

The <modules> section takes moduleIDStartCount as an optional value. If it is
given, module numbering starts with this value and is increased for every module, so
the number does not have to be stated in every module. By explicitly specifying the
module ID the default value can be overridden.

Each module has a separate <module> section. The <readoutFrequency> now is
specified within the module instead of the detector itself. Afterwards a pad layout is
defined. The module has the optional parameters of the <angle> the module is rotated
with respect to the global coordinate system and the <offset> the local origin is
shifted. x_r and y_phi are values in the global coordinate system. The active area can
be extended using <enlargeActiveAreaBy>.

In case there are several similar modules which only vary in some of the parameters,
one can define a <default> module as the first section within <modules>. All parame-
ters that are common to all modules are specified in this section, only the individual
parameters have to be specified for each module. This improves code readability and
helps to avoid copy and paste errors. However, a default value can be overridden in each
module. The usage of a default module is shown in the more verbose example in the
appendix for eight identical sector modules which make up a full circle.



EUDET-Memo-2008-31

<gear >
<detectors>

<detector name="TPC" geartype="TPCParameters">

<maxDriftLength value="600.0" />
<coordinateType value="polar" />

<modules moduleIDStartCount="20">
<module>
<readoutFrequency value="2.0e+07" />

<PadRowLayout2D type="FixedPadAngleDiskLayout"
rMin="60" rMax="150"
nRow="14"
phiMin="-0.3926990816987241548"
phiMax="0.8926990816987241548"
nPadsInRow="17">
</PadRowLayout2D >

<angle value="2.3" />
<offset x_r="145" y_phi="0.3" />
<enlargeActiveAreaBy value="1."/>

</module>
</modules>
</detector>

</detectors>
</gear>

Listing 1: A simple XML file describing one module.



EUDET-Memo-2008-31

The XML parser is 100% backward compatible with the old syntax where the pad
layout is directly placed in the TPCParameters detector. In this case the parser creates
a TPCParameters object with only one module. As described above this also is backward
compatible so that no change in existing programme code is necessary. However, old
and new XML syntax cannot be mixed.

6 Conclusion

The TPCParameters class has been extended to contain multiple modules. Each of
the modules can have an offset to the global coordinate system and be rotated by
an angle. The TPCModule contains an implementation of a pad layout and translates
its local coordinates to the global coordinate system. As the TPCModule itself is an
implementation of the abstract PadRowLayout2D class, it provides all the functionality
of the hitherto direct usage of the pad layouts, is 100% backward compatible and the
change is completely transparent for the user.

Acknowledgement

Thanks to Frank Gaede, who helped us to design the classes and integrate them consis-
tently into the GEAR framework.

This work is partly supported by the Commission of the European Communities under
the 6" Framework Programme ”Structuring the European Research Area”, contract
number RI13-026126.

References

[1] The GEAR home page: http://ilcsoft.desy.de/portal/software_packages/
gear/


http://ilcsoft.desy.de/portal/software_packages/gear/
http://ilcsoft.desy.de/portal/software_packages/gear/

EUDET-Memo-2008-31

A Example XML file

<gear>
<l--
Example XML file for GEAR describing a modular TPC.
The end plate has eight wedge shaped modules, each being
one eights of a full circle.
In addition there are two rectangular modules within the
circular ring.
-—>

<detectors>

<!-- The TPC has geartype set to TPCParameters -->
<detector name="TPC" geartype="TPCParameters">

<!-- First set the global parameters -->

<!-- Drift length in mm -->

<maxDriftLength value="600.0" />

<!-- Type pf coordinate system, "cartesian" or "polar" -->

<coordinateType value="cartesian" />

<!-- The modules section
The first module has ID 20, for all following
modules the ID is increased by 1
-—=>
<modules moduleIDStartCount="20">

<!-- First there is a default module.
It contains all properties which are common
for all modules
-—>
<default>
<!-- Each module has its own readout frequency -->
<readoutFrequency value="2.0e+07" />

<!-- There is a pad layout in each module -->

<PadRowLayout2D type="FixedPadSizeDiskLayout"
rMin="386." rMax="1626."
padHeight="6." padWidth="2."
maxRow="206" padGap="0.">



EUDET-Memo-2008-31

<!-- In this example phiMin corresponds to
the angle of 1 mm on a circle
at a radius of 386. mm (rMin)

-=>

<phiMin value="4.123185054194179844e-4"/>

<!-- phi_max = pi/4 - phiMin -->

<phiMax value="0.784985844892028861"/>

</PadRowLayout2D >

<!-- Enlarge the active area by 1 mm.
The angle is enlarged such that the gap
is 1 mm at rMin. Combinded with the
values of phiMin and phiMax
the Module is 1/8 of a full circle.
-—>
<enlargeActiveAreaBy value="1."/>

</default>

<!-- The first module is not rotated. -->
<module>
<angle value="0." />

</module>

<!-- Rotate each of the following modules
by 1/8 of a circle.
-->
<module>

<angle value="0.785398163397448279" />
</module>

<module>
<angle value="1.570796326794896558" />
</module>

<module >
<angle value="2.356194490192344837" />
</module>

<module >
<angle value="3.141592653589793116" />
</module>

<module >

<angle value="3.926990816987241395" />
</module>

10



EUDET-Memo-2008-31

<module >
<angle value="4.712388980384689674" />
</module>

<module >
<angle value="5.497787143782137953" />
</module>

<!-- The two rectangular modules overwrite the values
set in the default module.
-=>

<module>
<!-- Set a module number independent from
the automatic numbering
-=>
<moduleID value="100"/>

<!-- Shift the origin -->
<offset x_r="130.0" y_phi="0" />

<!-- Do not rotate -->
<angle value ="0" />
<!-- Overwrite the default readout freuqency -->

<readoutFrequency value="2.5e+07" />

<!-- Define a rectangular pad plane -->
<PadRowLayout2D type="RectangularPadRowLayout"
xMin="-50." xMax="50."
yMin="-50." repeatRows="5">
<row nPad="10" leftOffset="4.5." padHeight="9.0"
padWidth="9.0" rowHeight="10.0" />
<row nPad="10" rightOffset="4.5." padHeight="9.0"
padWidth="9.0" rowHeight="10.0" />
</PadRowLayout2D >

<!-- Enlarge the active area by 1 mm -->

<enlargeActiveAreaBy value="1."/>
</module>

11



EUDET-Memo-2008-31

<!-- Another modue with a different offset -->
<module>

<moduleID value="101"/>

<offset x_r="-130.0" y_phi="0" />

<angle value ="0" />

<readoutFrequency value="4.0e+07" />

<PadRowLayout2D type="RectangularPadRowLayout"
xMin="-50." xMax="50."
yMin="-50." repeatRows="5">
<row nPad="10" leftOffset="4.5." padHeight="9.0"
padWidth="9.0" rowHeight="10.0" />
<row nPad="10" rightOffset="4.5." padHeight="9.0"
padWidth="9.0" rowHeight="10.0" />
</PadRowLayout2D >
<enlargeActiveAreaBy value="1."/>
</module>

</modules>
</detector>
</detectors>

</gear>

12



	Introduction
	Design Considerations
	The TPCModule
	Changes in TPCParameters
	The XML Syntax
	Conclusion
	Example XML file

