
0.1 Vertex Finding - ZVTOP 1

0.1 Vertex Finding - ZVTOP

ZVTOP[1] is a proven vertex finding algorithm developed by D Jackson and

used at the SLD experiment[2]. ZVTOP was chosen for this study due to its

previous use for phenomenological studies of a linear collider (e.g.[3],[4],[5],[6])

and the local presence of the initial developer of the algorithm. ZVTOP consists

of two complementary vertex finding methods, ZVRES and ZVKIN[7], which are

detailed below. The use of two algorithms enables coverage of all jet topologies.

0.1.1 ZVRES

First the ZVRES method of ZVTOP is detailed. ZVRES uses mainly topolog-

ical (as opposed to kinematic) information and is most suited to decays where

there is more than one seen track from each vertex. The algorithm proceeds

by locating points in space where vertices are likely to exist through use of a

heuristic function V (r), as defined below, that is a function of track density at

a given point. Each maximum in V (r) is used as a candidate vertex location.

Ambiguities in track to vertex association are then resolved by comparing the

magnitude of V (r) between vertices and how compatible each track is with each

candidate vertex.

Differences in the algorithm presented here compared to the original ZVTOP

paper are due to subsequent developments in the SGV FORTRAN implementa-

tion that had been used for previous studies. These changes were retained in the

current version so that comparisons could be made between studies performed

with this version and the SGV FORTRAN implementation.

Before detailing the steps of the algorithm it is necessary to define some of its

constituent parts. The effect of parameters (in italics) introduced is discussed

after the detail of the algorithm.



0.1 Vertex Finding - ZVTOP 2

Vertex Function

Function V (r) is the heuristic function used as an indicator of the likelihood of a

true vertex at r. It is based on a function fi(r) that is defined for each track and

which gives a measure of the likelihood of the track truly passing though point

r. It is therefore a tube with a Gaussian cross section with a width proportional

to the error on the track that follows the line of the track. The Gaussian is

unnormalised so that the function retains the value of 1 when co-incident with

the path of the track. In the original ZVTOP paper it is defined as:

fi(r) = exp{−
1

2
[(

x′ − (x′

0 + κy′2)

σT

)2 + (
z − (z0 + tan(λ)y′)

σL

)2]}

Note that this is a parabolic approximation to the track trajectory where x′ and

y′ are such that the track momentum is parallel to the y′ axis at the track’s point

of closest approach to the IP; x′

0 and z0 are the co-ordinates at this point. Note

that y′

0 does not appear as the y′ axis has been made parallel to the track. κ is

the curvature in the xy plane and λ is the track’s dip angle of the track in the yz

plane with respect to the y axis. The values σL and σT are the track errors in

the z direction and xy plane respectively. For the version of ZVTOP developed

for these studies, the parabolic approximation was removed and replaced with:

fi(r) = exp{−
1

2
(r − p)V−1(r − p)T },

where p is the point of closest approach of the track to r and V is the covariance

matrix of the track at p. In this case, fi(r) follows the helix exactly rather than

following the parabolic approximation.

These independent track functions are combined to produce the vertex func-



0.1 Vertex Finding - ZVTOP 3

x′

z

y′

x′

0

z0

λ

σLσT

Track Trajectory

Figure 1: Parabolic approximation variables

tion that gives a measure of the likelihood of a track co-incidence at any point:

V (r) =

N∑

i=1

fi(r) −

∑N

i=1
f2

i
(r)

∑N

i=1
fi(r)

(1)

This function tends to zero at points that are only near one track, and has

maxima at the coincidences of two or more tracks. Therefore large values of

V (r) indicate points in detector space that are likely to contain true vertices.

For example, in a region very close to three tracks, V (r) → 3− (3/3) = 2. This

represents the most basic form of V (r); it is modified to suppress maxima near

fake vertices by two mechanisms: the addition of an IP object and a weighting

of the volume around the jet axis.

The IP object is added by defining f0(r) for the IP analogously to fi(r) for



0.1 Vertex Finding - ZVTOP 4

r

α

Jet Axis

D

Figure 2: Jet Axis Weighting

the tracks:

f0(r) = exp{−
1

2
(r − p)V−1(r − p)T },

where p is the IP position and V the IP covariance. This f0(r) is added to V (r)

with a weight KIP :

V (r) = KIP f0(r) +

N∑

i=1

fi(r) −
KIP f2

0 (r) +
∑N

i=1
f2

i (r)

KIP f0(r)
∑N

i=1
fi(r)

This ensures a large peak dominates V (r) at the IP location, such that fake

vertices near the IP will be subsumed into the IP. RESOL A weighting is imple-

mented to suppress maxima that are far removed from the jet axis, which are

likely to be fake. This takes the form of a cylinder around the jet axis in which

V (r) is unchanged and outside of which V (r) reduces in proportion to the angle

α between the side of the cylinder and the line from the base of the cylinder to

r (see figure 2):

V (r) →
V (r) D ≤ 50µm

V (r) exp(−Kαα2) D > 50µm
, (2)

The parameter Kα controls how biased V (r) is towards the jet core, and hence

is made proportional to the jet momentum.



0.1 Vertex Finding - ZVTOP 5

min{V (r) : r ∈ r1 + α(r2 − r1), 0 ≤ α ≤ 1}

min{V (r1), V (r2)}

r1 r2

α

V (r)

Figure 3: Resolution Criterion

The final V (r) used is the one including IP and jet-axis weightings, but

these are an optional part of the algorithm. Any given vertex has two values of

V (r): V (rVERT) as measured at the fitted vertex position; and V (rMAX), the

local maximum in V (r) found by gradient ascent from the fitted vertex position.

These are rarely the same point. For example if two tracks are fit, but the vertex

fit is near a third track, the third track will pull the maximum in V (r) away

from the two-track fit.

Vertex Resolution

Determining whether two maxima in V (r) are resolved (i.e. if they represent

two distinct vertices) is a key part of ZVRES. Two vertices are resolved if:

min{V (r) : r ∈ r1 + α(r2 − r1), 0 ≤ α ≤ 1}

min{V (r1), V (r2)}
< R0 (3)



0.1 Vertex Finding - ZVTOP 6

where R0 is a threshold parameter (See figure 3). In other words, vertices are

resolved if the ratio of the minimum V (r) between the vertices to the lower V (r)

at either vertex is lower than the threshold. In this way if the vertices have no

significant valley in V (r) between them they are not resolved.

When two vertices are to be merged, the one with the smallest V (rMAX) is

removed and its tracks added to the other. If the removed vertex contained the

interaction point, it is assigned to the other vertex.

Algorithm

The general procedure followed by ZVRES is shown in figure 4 and described

below.

Generate two track candidates

The algorithm proceeds as follows: A vertex is created for each possible pairing

of the tracks in the input jet. These vertices are fit and retained if they meet

the following criteria:

Each track’s contribution to the fitted vertex χ2 must be less than parameter

χ2
0;

the value of V (r) at the fitted vertex position (V (rVERT)) is greater than a

threshold parameter V0.

If information about the IP is to be used, a further set of vertices is created,

each consisting of the IP and one jet track. Again these are fitted and retained

if the track or IP’s contribution to the fitted vertex χ2 is less than χ2
0.

Note that for two-object fits such as these, the χ2 of both objects in the fit

is equal, so these criteria are equal to a cut on vertex χ2 of 2χ2
0. A track can be

associated with many of the candidate vertices at this stage, for example at the

IP there will be many of these two-track vertices that will eventually be merged

if they are compatible.



0.1 Vertex Finding - ZVTOP 7

For every Track T:
For every Track T:

Remove all empty vertices

For every Track T1:
For every Track T1:IP

Tracks

For every Tracks T2:
For every Tracks T2:

If T1 is not T2

Create a Candidate
Vertex of T1 and T2

Remove T from vertices
with a V(r)VERT < 10% of Largest

Remove IP from all that contain it
except for the one with highest V(r)VERT

For every vertex V
For every vertex V

Unless V is resolved from every vertex

which was already checked by this step

and did not have T removed:

Remove T from V

Find vertex with
Largest V(r)VERT

Select all vertices
that contain T

Sort in order of V(r)VERT

Select all vertices
that contain T

Sort in order of V(r)MAX

Find V(r)MAX

Retain if V(r)VERT > V0

and χ2 > 2 x TwoProngCut

Retain if 
χ2 > 2 x TwoProngCut

For every Track T:
For every Track T:

Create a Candidate

Vertex of IP and T

Until all vertices are part of a cluster
Until all vertices are part of a cluster

Until none added
Until none added

Seed cluster with top vertex

Add all vertices that are unresolved
from any in cluster to cluster

Cluster

Merge cluster into
one vertex

Trim tracks by χ2

For every vertex V:
For every vertex V:

Sort in order of V(r)MAX

Done

Remove every track in V
from all vertices that have

not passed this step 

Figure 4: Flow diagram for ZVRES



0.1 Vertex Finding - ZVTOP 8

Remove tracks

Tracks are now removed from vertices. During this process the vertices are not

refit and those with only one track left are not discarded.

For each track T , the vertices that contain T are found. Track T is removed

from all of these vertices that have a V (rVERT) less than 10% of the one with

the highest V (rVERT). The remaining vertices that contain T are then sorted in

order of V (rVERT) and considered in descending order. Track T is removed from

the currently considered vertex if the vertex is unresolved from any previously

considered vertex (for track T ) that did not have T removed. The result of

this is that for a pair of vertices that are unresolved only the one with highest

V (rVERT) will retain the track.

The IP is removed from all vertices except that with the highest V (rVERT) that

contains the IP. At this point, all candidate vertices that have zero parts left

(tracks or IP) are discarded. Note that this leaves candidate vertices that have

only one track, but which still retain their position from the initial two-track

fit.

Cluster candidates

Each unresolved set of candidate vertices is now merged into a single vertex.

This is performed by taking a seed candidate vertex and finding all vertices

unresolved from it, then finding all vertices unresolved from those repeatedly

until no more are found to be unresolved. All vertices found in this unresolved

set are then merged. From the remaining vertices another seed is picked and

this process repeated until all vertices have been considered. Note that the

resolution of vertices in this step is performed using the position of V (rMAX)

rather than V (rVERT).

Remove tracks by χ2

Tracks are then cut from the vertices based on their χ2 contribution. For each



0.1 Vertex Finding - ZVTOP 9

vertex, if the track with the highest χ2 contribution to the vertex has a χ2

contribution above the cut threshold (χ2
0TRIM), it is removed and the vertex

refit. This is repeated till the track with the highest χ2 contribution is below

the cut threshold or the vertex no longer defines a point in space (i.e. has less

than two tracks and no ip object). After this χ2 trimming, all vertices that no

longer define points in space are removed.

Resolve Ambiguities

The last stage is to remove any remaining ambiguities in track allocation where a

track is contained in more than one vertex. Ambiguities are resolved by retaining

the track in the vertex with highest V (rMAX) out of all vertices that contain

that track. In descending order of V (rMAX), the candidate vertex’s tracks are

removed from all candidate vertices with a smaller value of V (rMAX).

Parameters

KIP is the weight of the IP object in the vertex function. Due to the vertex

function being used to resolve vertices, an increased value of KIP will merge

vertices near the IP with the IP. This can be useful for suppression of fake

vertices, but note that this should not be necessary if the IP’s covariance is

correct as a larger covariance has the same effect as a higher KIP . The default

value is 1.

Kα controls the opening angle of the cone in which V (r) is non-zero. A larger

value makes a less divergent cone. As lower-energy jets are less collimated, this

value is made proportional to the jet energy. The default value is 0.125 times

the jet energy in GeV.

R0 is the resolution criterion. A higher value will lead to increased merging

of vertices that are spatially close. The default value is 0.6.

χ2
0 and V0 determine which of the 1

2
N(N + 1) possible two-object fits are

immediately discarded at the beginning of the algorithm; a higher value of χ2
0



0.1 Vertex Finding - ZVTOP 10

or lower V0 increases the number considered but will lead to fake vertices. The

default values are 10 and 0.001 respectively.

χ2
0TRIM controls which tracks are rejected before the final ambiguity resolu-

tion, a higher value reduces the number of tracks rejected. The default value is

10.

0.1.2 ZVKIN

The ZVKIN method uses kinematic information about the input tracks in an

attempt to identify those vertices that would normally be lost due to a lack of

tracks seen in the detector. For example, from the decay vertex of B0 → D−e+,

only the e+ would be seen as the D would subsequently decay. Usually vertices

such as this would be lost as, with only one track, the location of the vertex is

undefined. As tracking is not possible for neutrals, many vertices fall into this

category. Where the subsequent D vertex is found, the lone B daughter track

can be easily identified as it will appear to come from a point close to the line

joining the D vertex to the IP. In this case, the vertex can be recovered easily,

after ZVRES for example. However in ∼ 23% per cent of these cases (??) the

D decay vertex produces one or zero seen tracks, leading to two vertices neither

of which is found.

The ZVKIN algorithm is shown diagrammatically in (5). It overcomes even

this seemingly pathological case by exploiting the fact that decays from an ini-

tial particle produced at the interaction point lie on a relatively straight line

following the initial particle’s momentum. At a centre-of-mass energy corre-

sponding to the Z resonance, the D decay point in a B → D decay chain is is

on average 4200 µm from the IP with the intermediate B decay point on average

only displaced 46 µm from the line joining the IP and the D decay vertex. This

corresponds to an angle of ∼ 10mr between the lines from the interaction point



0.1 Vertex Finding - ZVTOP 11

to the B and D vertices. FIGURE To use this information the algorithm adds

a fake track to the set of tracks to be vertexed that represents the unseen B

track. This track is known as the ”ghost track” as it represents the resurrected

B track. The algorithm then proceeds to cluster two-track coincidences using

fitted vertex probability to guide a ”build-up” clustering algorithm.

Finding the ghost track

Unlike the helical event tracks, the ghost track is linear with constant width

covariance and passes though the interaction point of the event. The principle is

to choose the direction and width of the track such that its vertices with the rest

of the tracks in the jet have a reasonable χ2, as this would be the case for the B

track had it been observed. This direction and width are found by a two-stage

iterative chi-squared minimisation. The first step ensures a ghost track that

points in approximately the correct direction. Firstly a linear track G is created

such that it passes through the interaction point and has unit momentum in

the direction of the input jet momentum. It is created with a constant circular

error ellipse of width 25µm. From this initial direction, G is swivelled in both

the θ and φ directions whilst still passing through the interaction point. These

angles are varied so as to minimise χ2
S1:

χ2
S1 =

∑

i

χ2
i

Li ≥ 0

(2χ2
0i
− χ2

i
) Li < 0

,

where χ2
i

is the χ2 of the vertex formed by track i and track G, Li is the

distance from the interaction point to this vertex projected onto track G, signed

so that if the vertex is in front of the interaction point (with respect to the jet)

it is positive. This is simply the dot product of the momentum of track G and

the vertex position. The value χ2
0i

is the χ2 of the vertex formed by track i and



0.1 Vertex Finding - ZVTOP 12

Create Ghost Track with 

Jet direction

Create Ghost Track with 

Jet direction

Adjust width to be 

consistent with jet tracks

Adjust width to be 

consistent with jet tracks

For every Track T: 
For every Track T: 

Minimise χ2
S1 with respect to

the Ghost Track direction

Minimise χ2
S1 with respect to

the Ghost Track direction

Adjust width to be 
consistent with jet tracks

Adjust width to be 
consistent with jet tracks

Tracks IP

For every Vertex V1:
For every Vertex V1:

For every Vertex V2:
For every Vertex V2:

Add high vertex and 
remove those which 

were merged to make it

Add high vertex and 
remove those which 

were merged to make it

If V1 is not V2

Create a trial merged

vertex of V1 and V2

Find trial vertex with

highest vertex probability

Find trial vertex with

highest vertex probability
Is probability 

above 

threshold?

Is probability 

above 

threshold?

Done

No

Yes

Create a Candidate
Vertex of the IP

Minimise χ2
S2 with respect to

the Ghost Track direction

Minimise χ2
S2 with respect to

the Ghost Track direction

Create a Candidate

Vertex of GT and T

Figure 5: Flow diagram for ZVKIN



0.1 Vertex Finding - ZVTOP 13

track G where the vertex position is constrained so that Li is zero (equivalent

to fitting with an ellipse of the ghost-track width at the interaction point). If

the initial direction of G is at a large angle to the true B direction, some of

the tracks may have vertices including G that are behind the interaction point

(Li < 0), hence this term of the χ2
i

is constructed to push G away from these

vertices to the true B direction. Note that this mechanism works only if G is

initially in the same hemisphere as the true B decay direction. Also note that as

the minimisation proceeds the values of χ2 and Li change continuously. χ2
S1 is

minimised until movements of 0.1 mrad in both θ and φ give no improvement.

After this initial minimisation, G should be a rough approximation of the

true B line of flight. At this point its width is adjusted so that every track

with Li > 0 when vertexed with G gives χ2
i
≤ 1. In practise only the track

with largest χ2
i

needs to be taken into consideration as if this has χ2
i
≤ 1 all

other tracks will also. If this width is less than parameter GWmin, it is set

to GWmin. The width of the ghost track at this point is an indication of how

much the tracks conform to a straight-line decay, for example if a straight line

could be drawn through all jet tracks, track G would have width GWmin.

A second round of minimisation is then performed with this new width and

without the mechanism to move away from tracks with negative Li. The value

to minimise becomes:

χ2
S2 =

∑

i

χ2
i

Li ≥ 0

χ2
0i

Li < 0

.

The minimisation is again performed to a level of 0.1 mrad. After this the

width of G is again adjusted in an identical manner. At this point, G is the best

approximation of the B line of flight and has a width consistent with having a

vertex with all tracks (Li < 0) at the level of χ2
i
≤ 1, ie it will form a good



0.2 Code Development 14

vertex with all tracks in front of the interaction point.

Build vertices using the ghost track

Track G is now used as a normal track to find vertices in a build-up vertexing

algorithm. Vertex probability is used as the criterion to cluster vertices. Due to

the previous setting of the width of G, true vertices will have a flat probability

distribution from 0.0 to 1.0. False vertices peak close to zero. Note that for this

to happen the correct number of degrees of freedom must be used, which is 2N

when fitting N tracks with the IP and 2N − 2 when fitting N tracks with G.

For N tracks, a set of N + 1 vertices V are formed consisting of each track

combined with G and one which is the interaction point. The vertex probability

of each possible pairing of vertices from V is calculated (note that if the ghost

track and the IP are in the combined vertex ,the ghost track is removed). The

combined vertex that gives the highest probability is added to V and the vertices

that combined to create it removed from V . Hence the number of vertices in

V is reduced by 1. This process of combining the two vertices that are most

probable continues until no combination gives a vertex probability greater than

1% or there is only one vertex left. At this point the tracks G and IP have

been clustered into likely vertices. The ghost track is now removed from all

vertices without refitting them. Note that this may leave some vertices with

only 1 track.

0.2 Code Development

0.2.1 Motivation

Originally ZVTOP was implemented in the SLD FORTRAN framework, the

ZVRES method of this implementation was adapted for the OPAL experiment at



0.2 Code Development 15

LEP and then further adapted for ILC studies in the FORTRAN frameworks of

BRAHMS, SIMDET and SGV. A direct non object-oriented translation to Java

was attempted but suffered from performance problems. (Not sure of ref) The

FORTRAN code base was poorly documented, becoming increasingly difficult

to maintain, with five different track parameterisations. There were also many

undocumented cuts and differences details? from the original ZVTOP paper

which were introduced by various authors. BLAH IMPLICATIONS

0.2.2 Implementation Methodology

Current effort in the European ILC community is centred around the mod-

ern C++ framework of MARLIN and LCIO (REF). While technically possible

and quicker to reuse the FORTRAN version of ZVTOP by means of a C++

wrapper or to directly translate it to C++, these were not seen as desirable as

they would impede further development. Reimplementing the algorithms in an

object-oriented fashion results in code that is easier to document, understand,

maintain and develop. The aim was a set of processors for the MARLIN frame-

work that integrated well with LCIO and the other processors being developed

for tracking etc. in the ILC community

It was therefore decided to redevelop the code from scratch in C++ using the

original ZVTOP paper as the starting point without reference to the FORTRAN

code. Any differences in the output between the new and original versions when

run on identical input tracks would then indicate either a bug in the new version

or a difference between the original paper and the FORTRAN implementation.

ZVTOP was analysed and a unified modelling language (UML) class diagram

(REF) for the code was developed (Figure 6 shows the simplified class diagram

for the major parts of the code). The aim of this was to identify the classes

to be implemented, their methods and how they collaborate to implement the



0.2 Code Development 16

VertexResolverEqualSteps

VertexResolverEqualSteps()
areResolved()

VertexFuncMaxFinderClassicStepper

VertexFuncMaxFinderClassicStepper()
findNearestMaximum()

VertexFitterKalman

VertexFitterKalman()
~ VertexFitterKalman()
fitVertex()

VertexFunctionElement

valueAt()
~ VertexFunctionElement()

VertexResolver

areResolved()
~ VertexResolver()

VertexFitter

fitVertex()
~ VertexFitter()

TrackState

~ TrackState()
TrackState()
resetToRef()
swimDistance()
swimToStateNearest()
swimToStateNearestXY()
sameTrack()
distanceTo()
xyDistanceTo()
chi2()
position()
phi()
charge()
isNeutral()
isCharged()
positionCovarMatrix()
parentTrack()

VertexFitterLSM

VertexFitterLSM()
~ VertexFitterLSM()
fitVertex()

CandidateVertex

removeTrackState()
addTrackState()
removeIP()
setIP()
mergeCandidateVertex()
claimTracksFrom()
trimByProb()
trimByChi2()
invalidateFit()
refit()
invalidateFuncMax()
findVertexFuncMax()
isResolvedFrom()
trackStateList()
hasTrack()
interactionPoint()
position()
positionError()
distanceTo()
vertexFuncMaxValue()
vertexFuncMaxPosition()
vertexFuncValue()
chiSquaredOfTrack()
chiSquaredOfIP()
chiSquaredOfAllTracks()
chiSquaredOfFit()
maxChiSquaredOfTrackIP()

VertexFunction

valueAt()
firstDervAt()
secondDervAt()
~ VertexFunction()

VertexFunctionClassic

VertexFunctionClassic()
~ VertexFunctionClassic()
valueAt()
firstDervAt()
secondDervAt()

InteractionPoint

InteractionPoint()
distanceTo()
position()
errorMatrix()
chi2()

VertexFuncMaxFinder

findNearestMaximum()
~ VertexFuncMaxFinder()

GaussEllipsoid

GaussEllipsoid()
valueAt()
ip()

GaussTube

+ GaussTube()
+ ~ GaussTube()
+ valueAt()

VertexFinderClassic

VertexFinderClassic()
addTrack()
setIP()
removeTrack()
clearIP()
findVertices()

Figure 6: Simplified UML class diagram for ZVTOP

algorithm. Care was taken to enable possible future vertexing algorithms to be

built on top of the code such that the algorithmic functionality of ZVTOP was

decoupled from the functionality of track and vertex manipulations. It was vital

to analyse the algorithms in this fashion before coding to avoid introducing un-

necessary coupling and complication. The C++ language was chosen because

the MARLIN[8] framework in which the algorithms run is C++ based. For the

linear algebra and vector operations needed, the BOOST[9] library was selected

as no standard had been agreed in the ILC community, and BOOST consists of

statically compiled templates which could be portably distributed with the code.

Where possible, the Standard Template Library [10] was used for containers and

algorithms to avoid unnecessary coding and testing. Established best practise

was followed for C++ such as the use of const and passing by reference for

composite objects. Memory management was performed by a lightweight tem-

plate framework (classes MemoryManager〈T 〉 and MetaMemoryManager)

written by the author which is based on objects existing either for the duration

of an event (usually physics objects) or a run (usually algorithmic objects). De-



0.2 Code Development 17

tailed documentation is provided with the code as both in line comments and

doxygen[11] blocks in header files.

The code was developed from the bottom up, starting with the underlying

manipulations of tracks and vertices. Firstly, code for track propagation was

implemented. This code underlies both algorithms and vertex fitting and hence

must be fast and robust; to enable ZVKIN it needs to support both linear and

helical tracks. Helical tracks were parametrised in the LCIO[12] format. An

important concept for track manipulations is that of swimming (also known as

propagating). The track is parametrised by the distance travelled along it in

the rφ plane ,s, relative to its point of closest approach to some fixed point

(usually the interaction point). The act of swimming is to vary s; for example,

to swim the track forward one cycle of the helix would be equivalent to adding

the circumference of the helix to s.

The following swimming methods were created as part of the TrackState

class:

propagation of a point along a track, with accompanying propagation of the

error on the track;

determination of the point on a track which is closest to a given point in detec-

tor space, both in the rφ plane and 3D;

determination of the point on a given track which is closest to another given

track, again in the rφ plane and 3D.

For linear tracks, these operations are implemented by simple algebra, how-

ever for helices simple analytical solutions are not available. The following

methods were implemented.

Swimming to the point of closest approach in the rφ plane is performed

analytically by finding the point of closest approach on the circle that the track



0.2 Code Development 18

follows and using the cycle of the helix in the z direction that is nearest the

IP (in the direction of the momentum of the particle i.e. a 3/4 cycles forward

is chosen over 1/4 backwards). This is a safe assumption to make as particles

below a momenta of 100 MeV are cut by default for both algorithms.

Swimming to the point of closest approach in 3D is performed by initially

swimming to the point of closest approach in 2D as these are close for helices

of large radius and for small values of z. The following iterative procedure is

then applied to find the 3D point. The distance from the track to the point

is parametrised as a function p(s), where s is the distance travelled along the

track. The desired minima in p(s) will correspond to the roots of dp(s)/ds. A

Taylor expansion of dp(s)/ds is taken at the current point and its roots found;

s is set to the root which has the smallest p(s). This process is repeated until

the change in s is smaller than the desired swimming precision (By default this

is 0.1µm).

Swimming a track to its point of closest approach to another track is also

performed iteratively using the point-swimming methods described above. The

first track is continually swum to a point on the second track, which is moved

along the second track in the direction that brings the points closer together

until a minimum is found.

TrackState TrackStatealso contains methods for calculating the distance of

the track to a point in both the rφ plane and 3D, and to calculate the χ2 of the

track to a point by Eq. (??).

Where possible, operations on TrackStates are evaluated lazily and transpar-

ently cached by the TrackState itself; they are computed only when the result

is actually needed and only computed once.

An analogous class InteractionPoint exists for the interaction point;p as this

is stationary it provides only its location, covariance matrix and χ2 to a point.



0.2 Code Development 19

The methods for calculating fi(r) as used in the ZVRES algorithm were im-

plemented by the GaussTube class which uses the TrackState class to implement

equation XX in ZVRES above by swimming to the point of closest approach

to r and using two-dimensional residual and error matrices identical to those

described in the calculation of χ2 above. The same function is implemented

for the interaction point by the GaussEllipsoid class. Both of these are sub-

classes of VertexFunctionElement, an interface (abstract base class) which gives

fi(r) without the caller needing to know if a tube or ellipse is being queried.

These elements are then used to calculate V (r) by the VertexFunction class

which combines their output by Eq. (1) above and applies the interaction point

ellipsoid and jet weighting.

The key class of object used by both algorithms in ZVTOP is the Candidat-

eVertex. This provides methods for manipulating a set of TrackState objects,

and optionally an InteractionPoint, which define a point in space. TrackState

and InteractionPoint objects can be added and removed from the CandidateV-

ertex, which automatically refits itself using a VertexFitter class. Two Candi-

dateVertices can be merged into one, the TrackStates and InteractionPoint from

one are added to the other (ensuring no duplication) and the first removed. A

CandidateVertex can claim tracks and the InteractionPoint it contains as being

exclusive to itself, removing them from other CandidateVertices as in the final

stage of the ZVRES algorithm. There is also a method for the CandidateVertex

to remove tracks from itself in order of their χ2 until some threshold is reached.

For fitting, finding the maximum in V (r) and resolving vertices the Candi-

dateVertex uses separate objects which fulfil the interface classes VertexFitter,

VertexFuncMaxFinder and VertexResolver ; the objects to be used can be spec-

ified per-vertex if needed.

A simple least squares fitter was implemented - VertexFitterLSM which uses



0.2 Code Development 20

a simple iterative descent method to minimise the χ2 of the vertex. This class

uses a general purpose function minimiser FunctionMinimiser〈T 〉. Two object

fits are performed analytically, and other fits are seeded by the spatial average

of the 1/2(N(N − 1)) two-object fits.

VertexFuncMaxFinderClassicStepper and VertexResolverEqualSteps were im-

plemented as in the original FORTRAN code. The position of V (rMAX) is found

by starting at the fitted vertex point and minimising in the along the x axis in

2µm steps , then similarly for the y and z axis. The step size is reduced and

the axes minimised in turn until the step size is less than one micron. For re-

solving vertices if the distance between r1 and r2 is less than 10µm the vertices

are considered unresolved. Note that this sets the minimum decay length that

can be found. For greater distances, V (r) is sampled at ten evenly distributed

points on the line from r1 to r2, with the minimum being used as the numerator

in Eq. (3)

The algorithms of ZVTOP were implemented in the classes VertexFinder-

Classic and VertexFinderGhost, which implement ZVRES and ZVKIN respec-

tively. Each is assigned a set of TrackStates and an InteractionPoint. The

method findVertices() then returns a set of CandidateVertices that are the out-

put of vertexing algorithm.

The ZVKIN algorithm is further sub-divided so that the finding of the g-host

track is performed in an independent class GhostFinderStage1. The subsequent

clustering is performed by VertexFinderGhost.

0.2.3 Testing

Testing was performed concurrently with development. Initially the track and

vertex-function classes were tested in a standalone executable with manually

specified tracks; by fixing track errors and varying the distance between tracks,



0.2 Code Development 21

the fitter’s χ2 and covariance matrix output could be tested. Pathological track

combinations (e.g. coincident, very low pt) could be tested to check the robust-

ness of swimming and fitting operations.

Testing of the ZVRES algorithm was more involved; in order to identify re-

gressions from the standard FORTRAN implementation it was necessary to be

able to pass the same input through both FORTRAN and the new implementa-

tion. Using the version of ZVRES in the SGV framework was the easiest way to

achieve this as SGV is a simple fast Monte Carlo framework that has been used

for previous ILC studies. It was relatively simple to link compiled C++ code

to the SGV executable so that both could be run in the same executable. This

process identified several bugs in the swimming and vertexing code. After fixing

these, it was found that the new implementation on average outperformed the

FORTRAN. ZVKIN was not tested as a working version was not readily avail-

able. The code was then integrated into the Marlin/LCIO framework using the

working classes detailed in chapter X. In order to fully test this integration, an

LCIO interface was written for SGV so that identical track input could still be

compared. At this stage the code was profiled using the Valgrind [13] framework

which identified that ∼ 90% of the execution time was spent swimming while

fitting, and that the time taken is exponentially dependent on the track mul-

tiplicity (Figure 7). Valgrind also identifies memory leaks, of which none were

found.



0.2 Code Development 22

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

200

400

600

800

1000

1200

1400

 Data
 Exponential Fit

Ti
m

e 
Pe

r J
et

 (m
s)

Number of Tracks in Jet

Figure 7: Run time of ZVRES in ms as a function of the number of tracks in
the input jet



Bibliography

[1] D.J. Jackson, Nucl. Instrum. Meth. A388 (1997) 247.

[2] SLD-Vertex Detector, F.E. Taylor, Prepared for 28th International Con-

ference on High-energy Physics (ICHEP 96), Warsaw, Poland, 25-31 Jul

1996.

[3] W. Walkowiak, (2001), hep-ex/0110039.

[4] G.B. Yu et al., (2003), hep-ex/0309041.

[5] Higgs Working Group of the Extended ECFA/DESY Study, K. Desch,

(2003), hep-ph/0311092.

[6] S.M. Xella Hansen et al., LC-PHSM-2003-061.

[7] J. Thom, SLAC-R-585.

[8] F. Gaede, Nucl. Instrum. Meth. A559 (2006) 177.

[9] J. Walter and M. Koch, The Boost Linear Algebra library,

http://www.boost.org/libs/numeric.

[10] A. Stepanov and M. Lee, The standard template library, HP Laboratories

Technical Report 95-11(R.1), November 14, 1995.

23



Bibliography 24

[11] D. van Heesch, Doxygen documentation generator,

http://www.doxygen.org.

[12] F. Gaede et al., (2003), physics/0306114.

[13] N. Nethercote and J. Seward, Proceedings of ACM SIGPLAN 2007 Confer-

ence on Programming Language Design and Implementation (PLDI 2007),

San Diego, California, USA, June 2007.


