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Abstract.
The detector description is an essential component that is used to analyze data resulting from
particle collisions in high energy physics experiments. We will present a generic detector
description toolkit and describe the guiding requirements and the architectural design for such
a toolkit, as well as the main implementation choices. The design is strongly driven by easy
of use; developers of detector descriptions and applications using them should provide minimal
information and minimal specific code to achieve the desired result. The toolkit will be built
reusing already existing components from the ROOT geometry package and provides missing
functional elements and interfaces to offer a complete and coherent detector description solution.
A natural integration to Geant4, the detector simulation program used in high energy physics,
is provided.

1. Introduction
The development of a coherent set of software tools for the description of High Energy Physics
detectors from a single source of information has been on the agenda of many experiments for
decades. Providing appropriate and consistent detector views to simulation, reconstruction and
analysis applications from a single information source is crucial for the success of the experiments.
Detector description in general includes not only the geometry and the materials used in the
apparatus, but all parameters describing e.g. the detection techniques, constants required by
alignment and calibration, description of the readout structures, conditions data, etc.
The design of the DD4hep toolkit[1] is shaped on the experience of detector description systems,
which were implemented for the LHC experiments, in particular the LHCb experiment [2, 3], as
well as the lessons learnt from other implementations of geometry description tools developed
for the Linear Collider community [4, 5]. Designing a coherent set of tools, with most of the
basic components already existing in one form or another, is an opportunity for getting the best
of all existing solutions. DD4hep aims to widely reuse used existing software components, in
particular the ROOT geometry package [6], part of the ROOT project[7], a tool for building,
browsing, navigating and visualizing detector geometries. The code is designed to optimize
particle transport through complex structures and works standalone with respect to any Monte-
Carlo simulation engine. The ROOT geometry package provides sophisticated 3D visualization
functionality, which is ideal for building detector and event displays. The second component is
the Geant4 simulation toolkit [8], which is used to simulate the detector response from particle
collisions in complex designs. In DD4hep the geometrical representation provided by ROOT



is the main source of information. In addition DD4hep provides the automatic conversions to
other geometrical representations, such as Geant4, and the convenient usage of these components
without the reinvention of the existing functionality.
In Section 2 the scope and the high-level requirements of the DD4hep toolkit are elaborated (in
the following also called ”the toolkit”). This is basically the high level vision of the provided
functionality to the experimental communities. In Section 3 the high-level or architectural design
of the toolkit is presented, and in subsequent subsections design aspects of the various functional
components and their interfaces will be introduced.

2. Project Scope and Requirements
The detector description should fully describe and qualify the detection apparatus and must
expose access to all information required to interpret event data recorded from particle collisions.
Experience from the LHC experiments has shown that a generalized view, not limited only to
geometry, is very beneficial in order to obtain a coherent set of tools for the interpretation of
collision data. This is particularly important in later stages of the experiment’s life cycle, when
a valid set of detector data must be used to analyze real or simulated detector response from
particle collisions. An example would be an alignment application, where time dependent precise
detector positions are matched with the detector geometry.
The following main requirements influenced the design of the toolkit:

• Full Detector Description. The toolkit should be able to manage the data describing the
detector geometry, the materials used when building the structures, visualization attributes,
detector readout information, alignment, calibration and environmental parameters - all
that is necessary to interpret event data recorded from particle collisions.

• The Full Experiment Life Cycle should be supported. The toolkit should support
the development of the detector concepts, detector optimizations, construction and later
operation of the detector. The transition from one phase to the next should be simple and
not require new developments. The initial phases are characterized by very ideal detector
descriptions, i.e. only very few parameters are sufficient to describe new detector designs.
Once operational, the detector will be different from the ideal detector, and each part of the
detector will have to have its own specific parameters and conditions, which are exposed by
the toolkit.

• One single source of detector information must be sufficient to perform all data
processing applications such as simulation, reconstruction, online trigger and data analysis.
This ensures that all applications see a coherent description. In the past attempts
by experiments to re-synchronize parallel detector descriptions were always problematic.
Consequently, the detector description is the union of the information needed by all
applications, though the level of detail may be selectable.

• Ease of Use influenced both the design and the implementation. The definition of sub-
detectors, their geometrical description and the access to conditions and alignment data
should follow a minimalistic, simple and intuitive interface. Hence, the of the developer
using the toolkit is focused on specifics of the detector design and not on technicalities
handled transparently by the toolkit.

3. Toolkit Design
Figure 1 shows the architecture of the main components of the toolkit and their interfaces to
the end-user applications, namely the simulation, reconstruction, alignment and visualization.
The central element of the toolkit is the so-called generic detector description model. This is
an in-memory model, i.e., a set of C++ objects holding the data describing the geometry and



Figure 1. The components of the DD4hep detector geometry toolkit.

other information of the detector. The rest of the toolkit consists of tools and interfaces to input
or output information from this generic detector model. The model and its components will be
described in subsequence sections.

3.1. The Compact Detector Description
Inspired from the work of the linear collider detector simulation [9, 10], the compact detector
description is used to define an ideal detector as typically used during the conceptual design
phase of an experiment. The compact description in its minimalistic form is probably not going
to be adequate later in the detector life cycle and is likely to be replaced or refined when a more
realistic detector with deviations from the ideal would be needed by the experiment.
In the compact description the detector is parametrized in minimalistic terms with user provided
parameters in XML. XML is an open format, the DD4hep parsers do not validate against a fix
schema and hence allow to easily introduce new elements and attributes to describe detectors.
This feature minimizes the burden on the end-user while still supporting flexibility. Such a
compact detector descriptions cannot be interpreted in a general manner, therefore so called
Detector Constructors are needed.

3.2. Detector Constructors
Detector Constructors are relatively small code fragments that get as input an XML element
from the compact description that represents a single detector instance. The code interprets the
data and expands its geometry model in memory using the elements from the generic detector
description model described in section 3.3. The toolkit invokes these code fragments in a data
driven way using naming conventions during the initialization phase of the application. Users
focus on one single detector type at the time, but the toolkit supports them to still construct
complex and large detector setups. Two implementations are currently supported: One is based
on C++, which performs better and is able to detect errors at compiler time, but the code is
slightly more technical. The other is based on Python fragments, the code is more readable and
compact but errors are only detected at execution time.
The compact description together with the detector constructors are sufficient to build the
detector model and to visualize it. If during the lifetime of the experiment the detector model
changes, the corresponding constructors will need to be adapted accordingly. DD4hep provides
already a palette of basic pre-implemented geometrical detector concepts to design experiments.
In view of usage of DD4hep as a detector description toolkit, this library may in the future also



Figure 2. Class diagram with the main classes and their relations for the Generic Detector
Description Model. The implementing ROOT classes are shown in brackets.

adopt generic designs of detector components created by end users e.g. during the design phase
of future experiments.

3.3. Generic Detector Description Model
This is the heart of the DD4hep detector description toolkit. Its purpose is to build in memory
a model of the detector including its geometrical aspects as well as structural and functional
aspects. The design reuses the elements from the ROOT geometry package and extends them
in case required functionality is not available. Figure 2 illustrates the main players and their
relationships. Any detector is modeled as a tree of Detector Elements, the entity central to
this design, which is represented in the implementation by the DetElement class [3]. It offers
all applications a natural entry point to any detector part of the experiment and represents
a complete sub-detector (e.g. TPC), a part of a sub-detector (e.g. TPC-Endcap), a detector
module or any other convenient detector device. The main purpose is to give access to the data
associated to the detector device. For example, if the user writes some TPC reconstruction code,
accessing the TPC detector element from this code will provide access the all TPC geometrical
dimensions, the alignment and calibration constants and other slow varying conditions such as
the gas pressure, end-plate temperatures etc. The Detector Element acts as a data concentrator.
Applications may access the full experiment geometry and all connected data through a singleton
object called LCDD, which provides management, bookkeeping and ownership to the model
instances.
The geometry is implemented using the ROOT geometry classes, which are used directly without
unnecessary interfaces to isolate the end-user from the actual ROOT based implementation.
There is one exception: The constructors are wrapped to facilitate a very compact and readable
notation to end-users building custom Detector Constructors.

3.4. Detector Element Tree versus the Geometry Hierarchy
The geometry part of the detector description is delegated to the ROOT classes. Logical
V olumes are the basic objects used in building the geometrical hierarchy. A Logical V olume is a
shape with its dimensions and consist of a given material. They represent unpositioned objects
which store all information about the placement of possibly embedded volumes. The same



Figure 3. The object diagram of a hypothetical TPC detector showing in parallel the Detector
Element and the Geometry hierarchy and the relationships between the objects.

volume can be replicated several times in the geometry. The Logical V olume also represents
a system of reference with respect to its containing volumes. The reuse of instances of Logical
V olumes for different placements optimizes the memory consumption and detailed geometries
for complex setups consisting of millions of volumes may be realized with reasonable amount
of memory. The difficulty is to identify a given positioned volume in space and e.g. applying
misalignment to one of these volumes. The relationship between the Detector Element and the
placements is not defined by a single reference to the placement, but the full path from the top of
the detector geometry model to resolve existing ambiguities due to the reuse of Logical V olumes.
Hence, individual volumes must be identified by their full path from mother to daughter starting
from the top-level volume.
The tree structure of Detector Elements is a parallel structure to the geometrical hierarchy.
This structure will probably not be as deep as the geometrical one since there would not need
to associate detector information at very fine-grain level - it is unlikely that every little metallic
screw needs associated detector information such as alignment, conditions, etc. Though this
screw and many other replicas must be described in the geometry description since it may be
important e.g. for its material contribution in the simulation application. Thus, the tree of
Detector Elements is fully degenerate and each detector element object will be placed only once
in the detector element tree as illustrated for a hypothetical TPC detector in Figure 3.

3.5. Extensions and Views
As depicted in Figure 1 the reconstruction application will require special functionality extending
the basics offered by the common detector element. This functionality may be implemented by a
set of specialized classes that will extend the detector element. These extensions will be in charge
of providing specific answers to the questions formulated by the reconstruction algorithms such
as pattern recognition, tracking, vertexing, particle identification, etc. One example could be to
transform a calorimeter cell identifier into a 3D space position in the global coordinate system. A
generic detector description toolkit would be unable to answer this concrete question, however it
provides a convenient environment for the developer to slot-in code fragments, which implement
the additional functionality using parameters stored in the XML compact description.
Depending on the functionality these specialized component must be able to either store
additional data, expose additional behavior or both. Additional behavior may easily be added
overloading the DetElement class using its internal data. The internal data is public and



Figure 4. Extensions may be attached to common Detector Elements which extend the
functionality of the common DetElement class and support e.g. caching of precomputed values.

addressed by reference, hence any number of views extending the DetElement behavior may
be constructed with very small overhead. Additional data may be added by any user at any
time to any instance of the DetElement class using a simple aggregation mechanism shown
in Figure 4. Data extensions must differ by their type. The freedom to attach virtually any
data item allows for optimized attachments depending on the application type, such as special
attachments for reconstruction, simulation, tracking, etc. This design allows to build views
addressing the following use-cases:

• Convenience Views provide higher level abstractions and internally group complex
calculations. Such views simplify the life of the end-users.

• Optimization Views allows end-users extend the data of the common detector detector
element and store precomputed results, which would be expensive to obtain repeatedly.

• Compatibility Views help to ensure smooth periods of software redesign. During the
life-time of the experiment often various software constructs are for functional reasons re-
designed and re-engineered. Compatibility Views either adapt new data designs to existing
application code or expose new behavior based on existing data.

4. Simulation Support
Detector-simulation depends strongly on the use of an underlying simulation toolkit, the most
prominent candidate nowadays being Geant4 [8]. DD4hep supports simulation activities with
Geant4 providing an automatic translation mechanism between geometry representations. The
simulation response in the active elements of the detector is not implemented by the toolkit,
since it is strongly influenced by the technical choices and precise simulations depends on the
very specific detection techniques. In Geant4 this response is computed in software constructs
called Sensitive Detectors.
Ideally DD4hep aims to provide a generic simulation application. Similar to the palette of
pre-implemented geometrical detector concepts to design experiments, it provides a palette of
Sensitive Detectors to simulate the detector response in form of a component library. Detector
designers may base the simulation of a planned experiment on these predefined components for
initial design and optimization studies. In a similar way easy access and configuration of other
user actions of Geant4 is provided.

5. Detector Alignment Support
The support for alignment operations is crucial to the usefulness of the toolkit. In the linear
collider community this support is basically missing in all the currently used geometry description
systems. The possibility to apply into the detector description alignment deltas (differences with
respect the ideal or measured position) and read them from an external source is mandatory
to exploit the toolkit. A typical alignment application would consist of calculating a new
set of deltas from a given starting point, which could then be loaded and applied again
in order to validate the alignment by recalculating some alignment residuals. The ROOT



geometry package supports to apply an [mis]-alignment to touchable objects in the geometry.
Touchable objects are identified by the path of positioned volumes starting with the top node
(e.g. path=/TOP/A1/B4/C3). Contrary to ordinary multiple placements of Logical V olumes,
touchable objects are degenerate and only valid for one single volume [6]. To simplify the usage
for the end user, the identification of a positioned volume will be connected to the Detector
Element, where only the relative path with respect to the Detector Element will have to be
specified rather the full path from the top volume. The delta-values will have to be read from
various data sources. The initial implementation will be based on simple XML files, later a
connection to other sources such as the detector conditions database is envisaged.

6. Conclusions
The design of the core of the DD4hep Detector Description Toolkit described has been
implemented to a large extent and several key aspects were addressed. The early adoption
of parts of the linear collider community is an invaluable asset to verify the usefulness of the
implemented design. These early end-users help to continuously verify that the implemented
functionality fulfills the needs of the experiment(s). Whereas some areas are actively worked
on such as the simulation part, other topics such as alignment and the connection of conditions
to detector elements are either not yet or very rudimentary implemented, though they were
addressed in the design. These will be subject of future work.
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