
Evaluation of the Relational
Implementation of the Conditions

Database Interface

Author: A.Amorim, N.Barros, D.Klose, J.Lima, C.Oliveira, L.Pedro
Date: February 2003

Abstract

The ConditionsDB interface is a C++ class library, built on top of a
database management system, to enable storage and retrieval of detector-
related information with an associated period of validity.

This document describes a first comparison study between the Oracle
v0.4.1.6 and the MySQL v0.2.6b implementations of the ConditionsDB in-
terface. A set of performance tests were executed both running locally in
the database server machine and using clients in remote machines.

It also addresses the issues related to the Large Scale Tests performed
using the MySQL prototype.

The necessary steps to build and install both implementations are also
described.

ATLAS-TDAQ Lisbon Group

Contents

1 Part I - Comparison between MySQL and Oracle implemen-
tations 4
1.1 Introduction . 4
1.2 Setting up the system . 4
1.3 Running examples . 4

1.3.1 Description of the tests 5
1.4 Intensive Usage . 6

2 Part II - Large Scale Tests 10
2.1 Introduction . 10
2.2 System Setup . 10
2.3 Large Scale Tests Results . 11

3 Conclusions 13

4 Appendix A - Installing, setting up and running the MySQL
and ORACLE servers, compiling and using the ConditionsDB
API on Linux 14
4.1 Using MySQL . 14
4.2 Using ORACLE . 15

5 Appendix B - Detailed test results for the MySQL and Or-
acle implementation of ConditionsDB 19
5.1 MySQL . 19
5.2 Oracle . 22

6 Appendix C - Graphical representation of the results for the
Large Scale Tests 25

CONTENTS 2

ATLAS-TDAQ Lisbon Group

List of Figures

1 time values for the MySQL implementation of ConditionsDB (local
and remote) . 6

2 time values for the Oracle implementation of ConditionsDB (local
and remote) . 6

3 time values for the MySQL implementation of ConditionsDB with
intensive usage tests (local and remote) 7

4 time values for the Oracle implementation of ConditionsDB with
intensive usage tests (local and remote) 8

5 Short . 8
6 objects stored vs. time spent storing for MySQL and Oracle imple-

mentations (remote) . 9
7 objects stored vs. time spent reading for MySQL and Oracle im-

plementations (local) . 9
8 objects stored vs. time spent reading for MySQL and Oracle im-

plementations (remote) . 10
9 Objects stored vs. time spent - fixating the number of controllers . 11
10 Number of controllers vs. time spent - fixating the number of ob-

jects stored . 11
11 Objects stored vs. time spent - fixating the number of controllers . 12
12 Number of controllers vs. time spent - fixating the number of ob-

jects stored . 12
13 Objects stored vs. time spent - fixating the number of controllers . 12
14 Number of controllers vs. time spent - fixating the number of ob-

jects stored . 12
15 MySQL implementation: local / remote 19
16 MySQL implementation: local / remote - Intensive Usage - storeDatax 20
17 MySQL implementation: local / remote - Intensive Usage - readDatax 21
18 Oracle implementation: local / remote 22
19 Oracle implementation: local / remote - Intensive Usage - storeDatax 23
20 Oracle implementation: local / remote - Intensive Usage - readDatax 24
21 Objects stored vs. time spent - fixating the number of controllers . 26
22 Number of controllers vs. time spent - fixating the number of ob-

jects stored . 27
23 Objects stored vs. time spent - fixating the number of controllers . 28
24 Number of controllers vs. time spent - fixating the number of ob-

jects stored . 29
25 Objects stored vs. time spent - fixating the number of controllers . 30
26 Number of controllers vs. time spent - fixating the number of ob-

jects stored . 31

LIST OF FIGURES 3

ATLAS-TDAQ Lisbon Group

1 Part I - Comparison between MySQL and
Oracle implementations

1.1 Introduction

The purpose of this work is to evaluate the performance of the Oracle and
MySQL implementations of Conditions Database (ConditionsDB) as they
are implemented at the present moment and to suggest paths for improve-
ment for both implementations.

The comparison was carried out using both the examples distributed
with the Oracle implementation, that were also used, with the appropri-
ate modifications, on the MySQL implementation and implementing wew
intensive usage examples that were created and applied to both implemen-
tations. These new applications, developed to evaluate the intensive usage
of the ConditionsDB include not only creating complex foldersets and folder
based structures but also storing and retrieving large number of objects.

The time spent running each one of this examples was measured and
provided the source for the comparison results.

1.2 Setting up the system

Both implementations can be found at standard CERN AFS locations and
both bring documentation on how to correctly set up the system in order to
achieve compilation without errors.

An Oracle or a MySQL server must be available to support the databases
and the client API’s libraries must also be installed in order to correctly
build the implementations. Both setup procedures are described in detail
in Appendix A. Installing the ORACLE version the Oracle 9i, Release 2 on
Suse Linux was rather straighforeward once the respective Suse rpm was
used. This is not the case for release 1 where several ad hoc operations
have to be performed. Information on how to instal this previous release is
available from the authors.

1.3 Running examples

All the tests were performed using a database server in a Linux PC with
the following configuration:

• Hardware:

– Intel Pentium 4, 1,6GHZ

– 756Mb DDR RAM PC133MHz

– 30 Gb HDD, ATA100, 7200RPM

1 Part I - Comparison between MySQL and Oracle
implementations

4

ATLAS-TDAQ Lisbon Group

• Operating Sytem:

– Suse 8.0, linux kernel 2.4.18-64GB-SMP

• Database Servers:

– Oracle: Oracle9i Enterprise Edition Release 9.2.0.1.0 - Produc-
tion With the Partitioning, OLAP and Oracle Data Mining op-
tions JServer Release 9.2.0.1.0 - Production

– MySQL: Distrib 3.23.48

Below is the list of all the examples used on the tests, as well as a brief
description of the different steps involved. Some benchmarks were adapted
from the examples distributed in the 0.4.1.6 distribution of the Oracle im-
plementation that were also migrated to the MySQL implementation. Due
to the abstract interface design of the ConditionsDb interface, the migration
to MySQL is easily accomplished with minor changes in the code.

From the common code:

#include <ConditionsDB/CondDBXXXXMgrFactory.h>
...
ICondDBMgr* CondDBmgr = CondDBXXXX MgrFactory::createCondDBMgr();
...
CondDBmgr->init();
...
CondDBXXXXMgrFactory::destroyCondDBMgr(CondDBmgr);

XXXX must be changed for the specific implementation. For MySQL it
must be changed to MySQL and for Oracle to OracleDB.

1.3.1 Description of the tests

• createFolders - Connects to the database server. Verifyes if a folder-
set/folder structure (cal/temp) exists. Should not exist, creates it.

• exampleObject and storeData - Stores an object under a given folder
with defined characteristics, such as time validity, insertionTime, layer
and data. exampleObject creates one object and storeData creates
three objects with different time validity.

• exampleObjectRead and readData - Reads an object already stored
and prints out all it’s properties.

• comprehensiveTest - Extends the functionality of all the procedures
(NOTE - this test was not migrated to MySQL).

1.3 Running examples 5

ATLAS-TDAQ Lisbon Group

To measure the time spent by each test, the time Unix function was
used by preceeding the command by ”time”. We have recorded the real
time, the user time and system time. From the manual page of the function
comes the definitions: real time - the elapsed real time between invocation
and termination, user time - the user CPU time, system time - the system
CPU time.

The real time for each test is listed bellow. The chosen value includes the
time spent on network transport. All tests were done in dedicated machines
that were performing only this task. Appendix B contains the detailed test
results for real, user and system time.

• MySQL Results

Figure 1: time values for the MySQL implementation of ConditionsDB (local and
remote)

• Oracle Results

Figure 2: time values for the Oracle implementation of ConditionsDB (local and
remote)

1.4 Intensive Usage

The following tests were implemented in order to test the different im-
plementations in it’s functionalities and to see it’s behaviour under heavy
load, creating the database structures and performing intensive storage and
reading procedures. The tests are based on the examples distributed with
the Oracle implementation.

1.4 Intensive Usage 6

ATLAS-TDAQ Lisbon Group

• createFolderx - Connects to a given database in the database server.
If none exists, creates a defined structure associated with the three
levels of foldersets and a folder.

• storeDatax - Connects to the database server. Verifies the existence
of a defined folder. If it does not exist, it is created. The user is
prompted for the number of objects to be stored. All objects will be
stored using the same time validity, insertionTime, and data, but each
will be in a different layer.

• readDatax - Connects to the database server. Looks into a defined
folder and sees if it’s not empty. Gets all the objects stored in that
folder and iterates over all, showing their values.

For the storeDatax test, diferent quantities of objects were stored in
order to study the relation between objects stored vs. time spent storing
and between objects stored vs. time spent reading.

Figure 3: time values for the MySQL implementation of ConditionsDB with in-
tensive usage tests (local and remote)

1.4 Intensive Usage 7

ATLAS-TDAQ Lisbon Group

Figure 4: time values for the Oracle implementation of ConditionsDB with inten-
sive usage tests (local and remote)

Graphical Representation

Figure 5: objects stored vs. time spent storing for MySQL and Oracle implemen-
tations (local)

1.4 Intensive Usage 8

ATLAS-TDAQ Lisbon Group

Figure 6: objects stored vs. time spent storing for MySQL and Oracle implemen-
tations (remote)

Figure 7: objects stored vs. time spent reading for MySQL and Oracle implemen-
tations (local)

1.4 Intensive Usage 9

ATLAS-TDAQ Lisbon Group

Figure 8: objects stored vs. time spent reading for MySQL and Oracle implemen-
tations (remote)

2 Part II - Large Scale Tests

2.1 Introduction

For the Large Scale Tests up to 100 PC’s were used as clients for
the MySQL server using the MySQL ConditionsDB API. The Online
Software infraestructure was used to allow synchronisation of the client
processes. Each client runs as a controller for the Online Software that
activates a certain process on that client everytime a state transition
occurs using RunControl. The type of test and the number of objects
to be managed were preconfigured on a database server. On the Load
to Configure transition, the test configuration occurs connecting to the
database server in order to get its parameters such as the type of test
(Store or Read test), database names and number of objects. The
Configure to Run transition executes the test.

The tests are the same as described in the Intensive Usage chapter.
Tests were performed by using different values of objects to be stored
and read from the database and different numbers of clients accessing
it. Due to implementation limitations, each client stores the objects
in one database. At the moment it is not possible for several clients
to store the objects on one database at the same time. Although it is
possible for all the clients to read the objects from the same database.

Each client gets its start and end time for its test process. The time
results presented are the average value of its duration.

2.2 System Setup

• Client Details:

– Intel PIII 1GHz dual processor

– Linux 2.4.18-18.7.x.cernsmp

2 Part II - Large Scale Tests 10

ATLAS-TDAQ Lisbon Group

– 376 MByte RAM

– On-Line Software release 00-18-01

– gcc 2.96 compiler

– Gigabit network between the clients

• Server Details

– Intel PIV 2GHz

– Linux 2.4.18

– 1 GByte RAM

– cc 2.95.4 compiler

– MySQL Distrib 3.23

2.3 Large Scale Tests Results

• Storing objects on diferent databases

Figure 9: Objects stored vs. time spent - fixating the number of controllers

Figure 10: Number of controllers vs. time spent - fixating the number of objects
stored

• Reading objects from diferent databases

2.3 Large Scale Tests Results 11

ATLAS-TDAQ Lisbon Group

Figure 11: Objects stored vs. time spent - fixating the number of controllers

Figure 12: Number of controllers vs. time spent - fixating the number of objects
stored

• Reading objects from same database

Figure 13: Objects stored vs. time spent - fixating the number of controllers
-

Figure 14: Number of controllers vs. time spent - fixating the number of objects
stored

2.3 Large Scale Tests Results 12

ATLAS-TDAQ Lisbon Group

3 Conclusions

At the present moment MySQL implementation shows better per-
formance in all tests.

Both implementations show time values that grow linearly with the
number of objects stored or retrieved.

On possible factor that will be investigated in the future is the use
of more indexed fields in the MySQL implementation. This feature can
bring even better results while selecting and reading objects but might
have a negative impact on the time spent while storing the data.

Setting up the system for the MySQL implementation seems much
simpler and has less hardware requirements. The Oracle DBMS on
the other hand has many powerful features and includes many assis-
tants that should help to bring the most benefit from the whole system.

Large Scale Tests

The time spent results for the readDatax test with one database
per client fixating the number of objects shows a exponential growth
in function of the number of clients making it unbearable to support
for clients above 100. The clients access should be of more concern on
the implementation future development.

For all other combinantions a linear growth is showned.

3 Conclusions 13

ATLAS-TDAQ Lisbon Group

4 Appendix A - Installing, setting up and
running the MySQL and ORACLE servers,
compiling and using the ConditionsDB API
on Linux

4.1 Using MySQL

The MySQL source code can be obtained at http://www.mysql.com
as well as documentation on how to install and use MySQL. The
MySQL max server should be installed since it includes extended fun-
cionalties. The mysql install db script must be invoked in order to
create the necessary structure to start MySQL. To protect the MySQL
root user with a password, issue the command:

mysqladmin -u root password <password>

The next step is creating a new user:

mysql -u root -p mysql
Enter password:
mysql>grant all privileges on *.* to <username> @’localhost’ identi-
fied by ’<password>’ with grant option;
mysql>grant all privileges on *.* to <username> @”%” identified by
’<password>’ with grant option;

This will create a very privileged user who can connect to the
database server either locally or from remote machines.

To enter in the MySQL command line client environment one can
use the following client application:

mysql -u <user> -p <password> -h <hostname>

The following command lists all databases inside MySQL:

mysql>show databases;

To use a specific database one can:

mysql>use <database name>;

4 Appendix A - Installing, setting up and running the MySQL
and ORACLE servers, compiling and using the ConditionsDB
API on Linux

14

ATLAS-TDAQ Lisbon Group

To navigate trough the database structure one can use SQL com-
mands like select * from <table name>;

Another usefull command that allows erasing a database:

mysql>drop database <database name>;

• Using the ConditionsDB MySQL implementation:

The abstract interface of the ConditionsDB allows the user code to
become almost independent of the implementation. The only modifi-
cations are in the init() method that is used to establish a connection
to the MySQL server. The input string, in this case, takes the form:

condDBmgr− > init(” < host >:< database name >:< user >:<
password > ”);

4.2 Using ORACLE

Oracle 9i, Release 2, was used. Due to some dependencies on the
specific linux platform, the instalation of Oracle 9i R1 in Suse Linux
8.0 is not trivial. However, once installed, it works correctly together
with the ConditionsDB implementation.

The installation problems in Oracle 9i R1 distribution were fixed
in R2 release and for this reason this last version was used to perform
the tests. The installation under Suse 8.0 follows the standard ORA-
CLE installation procedure but a package released by Suse support on
Oracle, orarun9i.rpm had to be installed to set up the correct kernel
parameters and several environment variables that are later used by
the instalation procedure.

During installation, the following installation options must be made:

• Available Products -> Oracle 9i Database 9.2.0.1.0

• Installation Type -> Enterprise Edition

• Database Configuration -> General Purpose

All this options enable the Partitioning feature that is required
for the process of creating the support database structure for Con-
ditionsDB.

4.2 Using ORACLE 15

ATLAS-TDAQ Lisbon Group

To start using a database, the database administrator must perform
this some steps. It’s necessary to start up and mount the database that
will be used. Perform:

user@machine >export ORACLE SID=<database name that will be
used>
user@machine>oraenv
ORACLE SID = [database name] ? (press Enter or insert database
name again)
user@machine>sqlplus /nolog
SQL*Plus>connect system as sysdba
password:
SQL*Plus>startup

For unmounting and shuting down a database, do shutdown instead
of startup.

In order to use the ConditionsDB implementation with Oracle, a
user must be set. This user must have certain privileges. To create a
user perform:

user@machine>sqlplus /nolog
SQL*Plus>connect system as sysdba
SQL*Plus>password:
SQL*Plus>create user <username> identified by <password>;
SQL*Plus>grant connect to <username>
SQL*Plus>grant ALL PRIVILEGES to <username>

To have access and navigate through all the structure created by
ConditionsDB, a SQL*Plus console can be used. Perform:

user@machine>sqlplus <user>/<password> @ <database name>

From SQP*Plus console it’s possible to navigate through all the
tables issuing SQL commands.

Dropping the ConditionsDB is not at the moment a code feature.
It must be performed using an external SQL script that uses all the
necessary SQL commands to automatically erase all the structure. This
script named dropCondDB.sql comes with the Oracle implementation
under the path implementationOracle/sql. To launch it, perform:

user@machine>sqlplus <username> / <password>@<database name>

4.2 Using ORACLE 16

ATLAS-TDAQ Lisbon Group

SQL*Plus>start /<path>/dropCondDB.sql

The script asks for two values. The first one is the username and
the second is the ConditionsDB database name that was passed on the
init() method. This operation is irreversible and permanently deletes
all the structure and data stored in the ConditionsDB database chosen.

To see the ConditionsDB database names that are already created,
perform:

SQL*Plus>select * from condition dbs;

Another way of dropping the ConditionsDB database is to change
the value of the STATUS field for the chosen database from 0 to 1 on
the condition dbs table. This is not the same as erasing the database
with the dropCondDB script. Changing this value only makes the
implementation rewrite the structure like no one was created. For
changing the value, perform:

SQL*Plus>update condition dbs set status=1 where status=0;

To prepare the server in order to accept connections from clients, it’s
necessary to start a listener. This is a process that runs on the server
side and whose function is to listen for incoming client connection re-
quests and manage the traffic to the server. To configure a listener
the Oracle Net Manager tool may be used. Launch the tool by issuing
netmgr. Choose Oracle Net Configuration -¿ Local -¿ Listeners and
then Edit -¿ Create. Give the listener a name. Press Add Address and
in the Listening Locations verify if the default values for Protocol, Host
and Port are correct. Under Database Services press Add Database and
then modify the values for Global Database Name, Oracle Home Di-
rectory and SID. Those values will identify the databases available for
the remote connections and the Global Database Name must be passed
on the SQL*Plus connect command in the client as it was defined. To
start the listener perform:

oracle@machine>lsnrctl start

For stopping the listener use stop instead of start.

All the actions listed for local server are also valid for the client.
Even though it’s a client installation, on the Available Products win-
dow, the Oracle 9i Database 9.2.0.1.0 option must be chosen and not

4.2 Using ORACLE 17

ATLAS-TDAQ Lisbon Group

Oracle 9i Client 9.2.0.1.0 because this option does not install the all
Oracle files that are necessary for the implementation to compile. In
Database Configuration window, Software Only option may be chosen
since no database is needed on the client. The listener doesn’t need to
be configured and started since the client don’t receive connections for
services but a Net Service Name does. This is necessary in order for the
client to identify the Oracle service to access on the server. To establish
this configuration, the Oracle Net Configuration Assistant tool may be
used. Launch the tool by issuing netca. On the first window choose
Local Net Service Name Configuration. Next window choose Add a Net
Service Name. Next Window choose for which Oracle version it should
be. On the next window provide the service name you want to access.

Normally it should be the Global Database Name for the database
that will be accessed in the form database-name.domain. Next choose
the appropriate protocol and finally the hostname of the server and
if the standard port 1521 should be used or another. Give the Net
Service Name a name and finish the Assistant. This tool writes a
tnsnames.ora simple text file under the path stored on $TNS ADMIN
variable (usually /opt/oracle/product/901/network/admin if the de-
fault options were used). This file stores all the information given
and again can alternatively be modified to our convenience instead of
using the Oracle Net Configuration Assistant tool.

The server can then be accessed using SQL*Plus:

user@machine>sqlplus <username>/<password>@<Global Database
Name>

• Using the ConditionsDB Oracle implementation:

In the implementation code, the init() method is used in order to
establish a connection to the Oracle server. The syntax is the form:

condDBmgr->init(”user=<username>,passwd=<passwd>,db=<Oracle database name>,cond db=<conditionsdb database name”);

The db input string should be the Oracle database name (specified
in $ORACLE SID variable) for the local connection and the Global
Database Name for the remote connection. cond db input string is a
general name for the ConditionsDB structure.

4.2 Using ORACLE 18

ATLAS-TDAQ Lisbon Group

5 Appendix B - Detailed test results for the
MySQL and Oracle implementation of Con-
ditionsDB

5.1 MySQL

Figure 15: MySQL implementation: local / remote

5 Appendix B - Detailed test results for the MySQL and Oracle
implementation of ConditionsDB

19

ATLAS-TDAQ Lisbon Group

Figure 16: MySQL implementation: local / remote - Intensive Usage - storeDatax

5.1 MySQL 20

ATLAS-TDAQ Lisbon Group

Figure 17: MySQL implementation: local / remote - Intensive Usage - readDatax

5.1 MySQL 21

ATLAS-TDAQ Lisbon Group

5.2 Oracle

Figure 18: Oracle implementation: local / remote

5.2 Oracle 22

ATLAS-TDAQ Lisbon Group

Figure 19: Oracle implementation: local / remote - Intensive Usage - storeDatax

5.2 Oracle 23

ATLAS-TDAQ Lisbon Group

Figure 20: Oracle implementation: local / remote - Intensive Usage - readDatax

5.2 Oracle 24

ATLAS-TDAQ Lisbon Group

6 Appendix C - Graphical representation of
the results for the Large Scale Tests

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

25

ATLAS-TDAQ Lisbon Group

Figure 21: Objects stored vs. time spent - fixating the number of controllers

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

26

ATLAS-TDAQ Lisbon Group

Figure 22: Number of controllers vs. time spent - fixating the number of objects
stored

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

27

ATLAS-TDAQ Lisbon Group

Figure 23: Objects stored vs. time spent - fixating the number of controllers

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

28

ATLAS-TDAQ Lisbon Group

Figure 24: Number of controllers vs. time spent - fixating the number of objects
stored

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

29

ATLAS-TDAQ Lisbon Group

Figure 25: Objects stored vs. time spent - fixating the number of controllers

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

30

ATLAS-TDAQ Lisbon Group

Figure 26: Number of controllers vs. time spent - fixating the number of objects
stored

6 Appendix C - Graphical representation of the results for the
Large Scale Tests

31

