
A mySQL based ConditionsDB
Implementation

Author: J.Lima
Date: November 14, 2002
Version: 0.1
Status: draft

Abstract

A ConditionsDB API implementation, based in the well known, fast and re-
liable mySQL RDBMS as been developed. Initialy with online systems in mind
which could have problems running the Oracle server, this implementation has out-
performed the Oracle implementation in all tests perfomed so far. This encoraging
result has driven considerably improvements.

1

Contents

1 Introduction 3

2 Architecture 3

3 Database Schema 3
3.1 Database partitioning . 3
3.2 Loosely coupled tables . 4
3.3 Table Description . 4

4 Interface Model 9
4.1 Object Management . 9
4.2 Folder Management . 9

5 Tag Management 9

6 Test suite and development tools 10

7 Development Status 10
7.1 Database partitioning . 10
7.2 Specific implementation classes 11
7.3 Code for queries . 11
7.4 Test programs and tools . 11

8 Availability 12

9 User Manual 12
9.1 Downloading the latest version 12

10 Compile 13
10.1 Installation . 13
10.2 Setting up the environment . 13
10.3 Runing the tests . 14
10.4 Build your own examples . 15

11 Future developments 15

2

1 Introduction

The implementation of this alternative backend for the ConditionsDB was driven
by our belief that, due to the real time demands imposed to the online software,
it is important to try different implementation approaches, to test and benchmark
them. Also an open source solution for the client API allows compilation in DAQ
specific platforms like LynxOS.

We have chosen a MySQL based implementation because we already have a
great deal of experience using MySQL and also because MySQL is a light-weight
DBMS, which contrast with the other full-featured commercial ODBM’S (Objec-
tivity and Oracle) being used for other Conditions DB implementations.

This work is being was initialy based in the Objectivity implementation’s code[2].
However, since the development on that implementation has been discontinued, the
efforts were concentrated in syncronizing your implementation with the new IT im-
plementation, based on Oracle.

2 Architecture

From the architectural point of view, the design of the mySQL’s ConditionsDB im-
plemementation is structured in a layered fashion. Such layered design, with well
defined interfaces, shown schematicaly on figure 1, improves code maintenance
and eases the replacement of components. For instance, there is a work in progress
to replace the mySQL RDBMS backend (the bottom most layer above the mySQL
client library) for a Postgres based backend in order to evaluate the performance
impact. For this only few classes had to be rewritten.

3 Database Schema

The API doesn’t force us to use a particular database schema, so we’ve started the
development by establishing a database schema which optimizes what we think
it will be the typical online queries: queries for some particular condition or set
of conditions at a given point in time. A very important requirement is that this
schema should also allow a smooth scalability for a time increasing number of
objects.

3.1 Database partitioning

In order to address the scalability problem the database has been split in smaller
databases. For sake of clarity we shall call the main database, the database to which
the client connects, the level 1 database. This database contains folder and tag in-
formation and, for each folder, the coordinates to a so called level 2 database. This
second level databases contains tables with all Condition Objects information but

3

the actual condition data. That is, they store only the object information required
for search criterias. A key that will be used to locate the actual data is kept in
this database. The actual conditions data is stored in the level 3 databases. The
mechanism with this two levels of indirection necessary to locate and retrieve the
conditions data is shown in figure 2.

3.2 Loosely coupled tables

The concept of loosely coupled tables means that the relationships between some
tables are not known to the server. The are known, however, to the client. This
concept is a consequence of spliting the database as explained in previous section,
and it has deep consequences on the API implementation. First of all, the queries
cannot take advantage of table relationship: SQL joins and automatic referencial
integrity checks are not possible. This is the price to pay for placing the tables
anywere we want. Such a system, provided that carefully designed, will scale very
well without need for special scalability features from the server side. This mean
that we can, in principle, with this design, use almost any RDBMS backend. One
can argue that the client code will be sligthy more complex. However, the code
looks easier to understand and maintain than the PL/SQL procedures found in the
Oracle implementation.

3.3 Table Description

This section describes the database schema. As a convention, related tables share
a homonimous field.

This table is a self referenced table that implements the hierarchical folderset
and folder structure. This table is the first search node and holds an id for a table
coordinate that will be used to locate the data belonging to that folder.

mysql> describe folders_tbl;

+----------+---------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+----------------+

| fld_id | int(11) | | PRI | NULL | auto_increment |

| fparent | int(11) | | | 0 | |

| insert_t | timestamp(14) | YES | | NULL | |

| fpath | varchar(255) | | | | |

| fdesc | varchar(255) | | | | |

| fattr | varchar(255) | | | | |

| ddtype | int(11) | YES | | 0 | |

| tbl_id | int(11) | YES | | NULL | |

| is_set | tinyint(4) | YES | | 0 | |

+----------+---------------+------+-----+---------+----------------+

This table contains a list of all defined tags. The tags are associated both to

4

Figure 1: layered structure

Figure 2: database schema

5

objects and folders. While the association of tags to objects is mandatory, the
association of tags to folders is advisable for sake of efficiency.

mysql> describe tags_tbl;

+----------+---------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+----------------+

| tag_id | int(11) | | PRI | NULL | auto_increment |

| insert_t | timestamp(14) | YES | | NULL | |

| tname | varchar(64) | YES | | NULL | |

| tattr | varchar(64) | YES | | NULL | |

| tdesc | varchar(255) | YES | | NULL | |

+----------+---------------+------+-----+---------+----------------+

Auxiliary table to bind tags to folders. This is a normal table relationship in the
sense of the database relational model.

mysql> describe tag2folder_tbl;

+----------+---------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+-------+

| tag_id | int(11) | | PRI | 0 | |

| fld_id | int(11) | | PRI | 0 | |

| insert_t | timestamp(14) | YES | | NULL | |

+----------+---------------+------+-----+---------+-------+

Used to describe the object type, it is not yet used as the object type support is
under development.

mysql> describe object_type_tbl;

+-------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+----------------+

| type_id | int(11) | | PRI | NULL | auto_increment |

| description | varchar(255) | YES | | NULL | |

| libpath | varchar(255) | YES | | NULL | |

| code | varchar(255) | YES | | NULL | |

+-------------+--------------+------+-----+---------+----------------+

Tables to hold object table coordinates. Recall that a database coordinate is a

6

(server,database, table) triplet.

mysql> describe servers_tbl;

+---------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------+--------------+------+-----+---------+----------------+

| srv_id | int(11) | | PRI | NULL | auto_increment |

| srvname | varchar(255) | YES | | NULL | |

+---------+--------------+------+-----+---------+----------------+

mysql> describe databases_tbl;

+--------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+--------+--------------+------+-----+---------+----------------+

| db_id | int(11) | | PRI | NULL | auto_increment |

| dbname | varchar(255) | YES | | NULL | |

| srv_id | int(11) | | | 0 | |

+--------+--------------+------+-----+---------+----------------+

mysql> describe tables_tbl;

+---------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+---------+--------------+------+-----+---------+----------------+

| tbl_id | int(11) | | PRI | NULL | auto_increment |

| tblname | varchar(255) | YES | | NULL | |

| db_id | int(11) | YES | | 0 | |

+---------+--------------+------+-----+---------+----------------+

Default object table. up to one such table per folder can exist, although all
folders can share a single table. The data partitioning must be tunned with the
particular usage constraints in mind. This table doesn’t contain the actual data but
only the keys used for search criteria. It holds an id for the table path (tbl id) and
the id for the row within the table (dat id) holding the actual data. Those are two

7

loose relationships.

mysql> describe def_object_key_tbl;

+----------+---------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+---------------+------+-----+---------+----------------+

| obj_id | int(11) | | PRI | NULL | auto_increment |

| insert_t | timestamp(14) | YES | | NULL | |

| since_t | bigint(20) | YES | | NULL | |

| till_t | bigint(20) | YES | | NULL | |

| fld_id | int(11) | YES | | NULL | |

| layer | int(11) | YES | | NULL | |

| tbl_id | int(11) | YES | | NULL | |

| dat_id | int(11) | YES | | NULL | |

+----------+---------------+------+-----+---------+----------------+

Default data table. This table contains the actual object data, identified by a
single id (dat id) which can be easily referenced by the object table.

mysql> describe def_data_tbl;

+-------------+--------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+--------------+------+-----+---------+----------------+

| dat_id | int(11) | | PRI | NULL | auto_increment |

| data_type | int(11) | YES | | NULL | |

| description | varchar(255) | YES | | NULL | |

| oblock | mediumblob | YES | | NULL | |

+-------------+--------------+------+-----+---------+----------------+

Establishes the relationship between objects within a folder a a particular tag.
This is a loose relationship.

mysql> describe def_obj2tag_tbl;

+--------+---------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+--------+---------+------+-----+---------+-------+

| tag_id | int(11) | | PRI | 0 | |

| obj_id | int(11) | | PRI | 0 | |

| fld_id | int(11) | | PRI | 0 | |

+--------+---------+------+-----+---------+-------+

This table defines the data partitioning policy used for a particular 2 level

8

database.

mysql> describe def_partition_tbl ;

+---------+------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

+---------+------------+------+-----+---------+-------+

| tbl_id | int(11) | | PRI | 0 | |

| since_t | bigint(20) | YES | | NULL | |

| till_t | bigint(20) | YES | | NULL | |

+---------+------------+------+-----+---------+-------+

4 Interface Model

4.1 Object Management

For object management we mean the operations available through the ICondDB-
DataAccess interface. These include the most frequently used operations.

There are two kinds of methods to retrieve data from the conditions database:
the find methods (findCondDBObject), and the browse methods, like browseOb-
jectsAtPoint. The former returns a single object while the later return an object
iterator.

4.2 Folder Management

The conditions data is organized in a filesystem like tree structure in which the
nodes are folders and foldersets. FolderSets represents branches in this tree struc-
ture, while folders represent the leaves. The conditions objects (i.e the data) are
stored inside folders. All the objects for all the versions and validity intervals of a
given type of conditions data are grouped in a single folder. But objects belonging
to different kinds of conditions data are kept in different folders.

The interface to manage folders and foldersets is provided by the ICondDB-
FolderMgr class.

When creating a folder, the attribute string, formated as a XML string, will be
used to determin the database where the objects will be stored.

5 Tag Management

This is the interface provided by the ICondDBTagMgr class. Provides tag creation
and deletion methods. The interface allows the tagging of folders, not objects
itself. When a folder is tagged, all objects at HEAD inside that folder will be
tagged. Figure 3 illustrates the meaning of the HEAD and the effect of tagging.

9

Figure 3: tagging and browsing example in the ConditionsDB mySQL’s implemen-
tation.

6 Test suite and development tools

In addition to the test programs that came with the Oracle implementation and
have been incorporated in our test suite, we have developed our own tests which,
in principle, should give the same results on both implementations. The note[3]
explains the performed tests in reasonable detail.

A ConditionsDB graphical Browser that has proven to be very useful in de-
buging has been developed. The browser have been used only with the mySQL’s
implementation but it should perform equaly well with the Oracle implementation
as it only uses the API’s documented methods. A browser snapshot is found in
figure 4.

The browser was written in TCL using Tk and the Tix mega widget library.
It interacts with the conditionsDB through a command line tool called cdbadmin
which, in turn uses the C++ ConditionsDB API.

7 Development Status

7.1 Database partitioning

The database is subject to two kinds of partitioning. First, object tables are split
in a per folder basis, then a time validity criteria can be used to further split the
resulting object tables in smaller tables.

10

Figure 4: ConditionsDB graphical browser in action.

Status: code completely written, yet some features are not activated due to lack
of a clear interface definition, namely, the creation of partitions has to be done
manualy.

7.2 Specific implementation classes

This is the hierarchy of classes derived from the interface which are particular to
each implementation. This implies the C++ code but not the actual queries.

Status: code completely written. All the code is pretty stable now and should
need to change to make the optimizations.

7.3 Code for queries

This code hides the mySQL details and the schema details from the upper API
layers. Status: completely written. However, more optimizations have to be ad-
dressed, namely exploring the usage of indexes.

7.4 Test programs and tools

Test program suite, including functional tests, performance tests, and a general
purpose administration tool and browser.

Status: several tests have been written, but a more comprehensive set of tests
must be designed. The general purpose administration tool and the graphical

11

browser are ready for expert use but should be extended and improved to achieve
the desired robustness.

8 Availability

The latest version can be downloaded by ftp or http from our site at Lisbon

ftp://kdataserv.fis.fc.ul.pt/pub/Software/

ConditionsDB-MySQL-0.2.6b.tgz

http://kdataserv.fis.fc.ul.pt/ATLAS/

ConditionsDB-MySQL-0.2.6b.tgz

We have also setup a CVS repository where you can find the latest development
version.

CVSROOT=:ext:kdata12.fis.fc.ul.pt:/usr/local/cvsroot

Package: ConditionsDB

Preferable, you can also access our CVS repository through a WEB interface.

http://kdataserv.fis.fc.ul.pt/cgi-bin/cvsweb.cgi/

The ConditionsDB mySQL’s implementation has been placed at the ATLAS
offline repository. That version is now outdated, partly because we are having
trouble in setting the CMT environment. Nevertheless we expect to solve these
problems and update the ATLAS offline repository soon.

CVSROOT=:kserver:atlas-sw.cern.ch:/atlascvs

Package: offline/Database/ConditionsDBMySQL

9 User Manual

9.1 Downloading the latest version

The latest version that (version 0.2.6b on time of writting) can be downloaded
from one of the locations shown in previous section. If We should stress that you
should never mix the databases created with some version of the code with the
code from a newer version, because there are dramatic changes between versions
that make databases incompatible. One of the factors that will determine a produc-
tions release is the capability to stuck with a stabilized database schema that make
databases compatible.

12

10 Compile

Although we have only tested in two platforms, the mySQL’s ConditionsDB im-
plementation should compile on any UNIX platform. The only requierments are
an working instalation of GCC (version 2.95.3 or above) with C++ support and the
development files for mySQL client library (version 3.23.41 or above). Start by
unpacking the distribution file in an appropriate directory.

tar zxf Conditions-MySQL-0.2.6b.tgz

Change to the source directory

cd ...

Edit the toplevel Makefile to match the settings of your host. The Makefile is
heavily comented, so just follow the instructions. In the Makefile you can set the
default INIT STRING for every CondDB application that doesn’t specify one.

Finaly type

make depend

make

10.1 Installation

The instalation settings are also defined in the toplevel Makefile. The default library
directory is /usr/local/lib. You can change it to fit your needs and then, as
root, type

make install

This will install the library in the appropriate place an run the ldconfig. How-
ever you’ll have to set the LD LIBRARY PATH variable manualy if the defined lib
directory is none of the standard system recognized ones (see next section for de-
tails).

10.2 Setting up the environment

There is a script in the utils directory which sets typical values for the environment
variables. You can use it as a template and edit it to fit your needs.

The relevant environment variables are

LD_LIBRARY_CONFIG

This sets the library search path. This works like the PATH environment vari-
able and should include the directory where libconddb.so is found.

For example

13

export LD_LIBRARY_PATH=/home/jmal/conddb/lib

COND_DB_INIT

This is the default initialization string. It is passed to the mySQL server at
startup and is of the form.

hostname:database_name:user:password

The real initialization string is defined as follows: if the application provides
an initialization string when calling the method CondDBmgr-¿init() the application
will use that string; if, on the other hand, CondDBmgr-¿init() method is called with
an empty argument list, the application will look for the initialization string in the
environment variable COND DB INIT; Finaly, if COND DB INIT is not defined, the
compile time default initialization string (defined in Makefile) is used instead.

COND_DB_DEBUG

This environment variable defines the level of debuging messages available
when running applications, provided that the API has been compiled with debug
support. From version 0.2.6a the debug messages are sent to a terminal other than
the one where we run the programs (/dev/pts/0). This works on Suse-Linux but
might not work on other systems. In won’t work without X11, or if the /dev/pts
filesystem is not activated in the kernel. You can edit the Makefile and change this
behaviour. (see coments on the Makefile).

10.3 Runing the tests

The main make target builds the ConditionsDB library as well as the test programs.
To perform the tests change to the tests directory an execute the programs. Some of
the test programs depend on others and other programs will fail if executed twice.
Although not strictly necessary to follow, we recomend the following sequence.

./basicSession Creates the database.

./storeData Stores a simple object.

./readData Readsback the object.

./genericObjectStore Stores a vector object.

./genericObjectRead Reads the vector object.

./storeDatax Stores multiple object (up to 1 million).

./readDatax Reads multiple objects.

./createTags Creates some tags.

./testTags Tag objects.

14

10.4 Build your own examples

The following lines can be used as a template for a bare ConditionsDB application,
but we advise you to take a look at one of the simple test programs, like storeData,
in the test directory.

The red lines are the only ones that will change according to the used imple-
mentation, Those are only 3 lines, no matter how long the code extends. For the
mySQL’s implementation ’XXXX’ must be replaced by ’MySQL’.

#Include <ConditionsDB/CondDBXXXXMgrFactory.h>

...

ICondDBMgr* CondDBmgr =

CondDBXXXXMgrFactory::createCondDBMgr();

...

CondDBmgr->init();

...

CondDBmgr->startUpdate();

CondDBmgr->createCondDB();

CondDBmgr->commit();

...

CondDBXXXXMgrFactory::destroyCondDBMgr(CondDBmgr);

A more complete description of the test programs as well as the test result
analysis can be found in the Conditions DB-test-note [3].

11 Future developments

There are several implementation issues subject to improvement here we’ll name
only the most important.

The database coordinate mechanism (see section ...) can be simplified to al-
low a more effective use of the concept. We have noticed that the triplet (ta-
ble/database/server) can be replaced by a (database/server) doublet providing the
same functionality at much less complexity.

Although the API mechanism that will allow us to define the data partitioning
among the databases has been identified, the implementation is not yet complete.

15

Partly this is due to some uncertains about the directions of possible evolution of
the interface specification and partly because we were much more involved with
other implementation issues. This is one of the features that will be ready for the
next release.

Basicaly that mechanism will allow to create a new database coordinate for
each folder based in the information contained in the XML string passed as the
attribute parameter, during the folder creation. The database coordinate will be
used to create the database, if it doesn’t exist yet, and to bind that folder to the
newly created or existing database.

Other implementation issues that will require some sort of interface modifica-
tion are being investigated.

An important effort has to be made to port the implementation to every possible
hardware platform used at ATLAS. Currently the implementation builds and runs
in the following platforms

SuSE 7.3 FreeBSD 4.5
There should be no problem in compiling with other versions of SuSE (at least

from 7.0) or recent versions of RedHat, or even on SunOS. But, of course, test must
be made.

At last but not least, besides the tests and comparisons that have allready been
performed, we plan to develop a more comprehensive test suite that will cover, in
a consistent manner, every realistic cases of ConditionsDB utilization.

References

[1] Stefano Paoli, Conditions DB Interface Specification.

[2] R.D. Schaffer, ATLAS Database Basics.

[3] C. Oliveira, First Evaluation of the Ralational Implementation of the Condi-
tionsDB.

[4] A.Amorim et al, Requirements on the Conditions Database Interface for
TDAQ.

16

