Development of a Python module for interactively
controlling the C Event Display (CED)

Bjorn Klaas, Georg-August-Universitat Gottingen, Germany

September 4, 2013

Abstract

We describe the development of a Python Event Display (pyced) for the Interna-
tional Linear Collider (ILC). Pyced is based on Python bindings to the C++/C
libraries LCIO and CED, the event data model and event display currently in use.
The use of Python introduces additional flexibility in interactive event analysis.
The development of the Python module pyced is described and a user guide pre-
sented in a How To form. Instructions for advanced usage are given. Options for
expanding functionality and optimizing performance are discussed.

Contents
1 Introduction

2 Development

4.2 Optimization .

2.1 Porting CEDViewer to Python

2.1.1 CEDViewer

2.1.2 Python Bindings

2.1.3 Python Implementation

2.1.4 Expanded Functionality

2.2 Optimization
3 Usage

3.1 Basic Usage

3.2 Intermediate Usage

3.3 Advanced Usage
4 Qutlook

4.1 Further Developmento

oI N =W NN NN - el

oo ©o

1 Introduction

The presented work was done in the Forschung an Lepton Collidern (FLC) group, whose
focus currently lies on the development of the International Linear Collider (ILC). Two
detectors are being developed for the ILC, the International Large Detector (ILD) and
the Silicon Detector (SiD). The DESY FLC group contributes to the ILD.

To study the performance of the proposed detector design events are generated using
Monte Carlo methods. These simulated events are visualized using the C' Event Display
(CED), written in C [1]. To load events from an LCIO file [2], process them and send them
to CED the C++ application CEDViewer [3] is used. Once compiled and executed the
functionality of the application cannot be modified further, therefore presenting static
images. These can only be altered using the functions build into CED, like rotating the
view and showing/hiding individual data or detector layers (Figure 1).

(a) Complete Event. (b) Side-view of Tracker- and Calorimeterhits.

Figure 1: An Event viewed using CED. Shown is a complete Event and a side-view with
Tracker and Calorimeter layer, and several Detector layers.

The newly developed Python module pyced is designed to replace the C++ application.
In its final version it will contain all functionality from the C++ code and expand it by
offering an Interactive Mode for dynamically modifying the contents of the data layers
during runtime. This allows the user to e.g. dynamically apply various cuts, like energy
or p; cuts, and tune the display to his/her liking.

2 Development

In a first step the C++ code from CEDViewer was ported to Python. The resulting code
was split into multiple functions and expanded by adding an easy to customize set of
maps containing the drawing parameters, and a set of functions making the Interactive

Mode more user-friendly. Lastly the resulting code was optimized using Python’s build-
in profiling module profile.

2.1 Porting CEDViewer to Python
2.1.1 CEDViewer

The original C++ code contains only one large method, doing all necessary calculations
and CED function calls. Using if statements the type of the currently processed col-
lection is determined and the proper code executed. Configuration of the layer, marker,
and size settings for individual collections is possible via a separate config file written in
XML.

2.1.2 Python Bindings

The LCIO framework is written in C++ and CED in C. Typically this would require
porting the entire framework to Python to use the classes and functions defined in LCIO
and CED. Fortunately Root provides a set of Python bindings, and the Python module
ctypes a set of methods for converting Python types to C types. This way the LCIO
objects containing the event data can be loaded directly into Python and used in a
pythonic way. The C functions can be called using wrappers, converting the arguments
passed to the functions via the ctypes module.

2.1.3 Python Implementation

The Python code was split into multiple functions to increase customizability, modularity
and re-usability.

Class PYCED() The definition of the class contains a set of enum like variables, which
are to be seen as constants and left untouched. They encode the names of the various
color schemes and variants of drawing the helix for tracks. The definition also contains
a function to load the color codes of the chosen scheme.

An instance of the class, called g for global, is created in the global scope of the
pyced module and dynamically expanded with all required and optional settings used
for displaying the events. The assignments of these settings are grouped in a separate
configuration file.

Configuration File All user definable settings are combined in a separate config file (by
default pyced.cfg.py). To offer the greatest flexibility and customizability the config file
is written in Python and loaded into the module as ¢s. This means the Python syntax
has to be obeyed when editing the config file. It also means that the config file can
contain function definitions and calls. This can be useful for adding custom functions
without editing the main module.

The collection specific parts of the configuration are held in three maps, the default
map (dm), type map (tm) and name map (nm). The dm contains all basic settings necessary

for drawing a collection. When a collection is processed the settings from the dm are
loaded and then extended and possibly overwritten by the settings from the tm entry
matching the collection type. These are in turn extended and possibly overwritten by
the nm entry matching the collection name. This means changing the entries of a map
only changes the collection settings if they are not defined in a higher level map as
well. The maps are individually wrapped in functions, to allow reseting them to the
hard-coded values when edited during runtime.

Event Reading and Processing The main loop of the module is contained in a dedi-
cated function. It initiates reading of an event from a chosen LCIO file, resets the CED,
initiates loading the detector design from a GEAR file [4], calls the function processing
the loaded event, and sends the data to the CED. After each iteration of the loop it
waits for user input and either draws the next event or terminates. It also terminates
when the LCIO file contains no more events.

All events are processed by the same function, looping over all collections in the
event. It initiates the dynamic expansion of the processed collection with the drawing
parameters defined in the configuration file, checks if the collection is selected for drawing
and, if true, calls the drawing function associated with the collection. Once all enabled
collections are drawn it passes the collected layer descriptions to the CED.

Collection Processing Depending on the type of the collection one of five functions is
called, either processing collections containing only hits, or also tracks, clusters, Monte
Carlo particles or reconstructed particles. The functions process the data stored in the
collection and call the wrapper functions matching the data types. These convert the
arguments to the corresponding C types and pass them to the CED function, either
drawing hits, lines, or helices.

Support Functions To perform smaller tasks a set of support functions was developed.
These set-up initial values, process the coloring of Tracker and Calorimeter collections,
process the layer descriptions, collect hits from subtracks of tracks, add the drawing
parameters from the configuration file to the collections, load C and C++ libraries and
wrap C functions. They also provide various cuts, implemented using closures, to limit
e.g. the energy or p; range of drawn collections.

Interactive Mode Functions This set of small functions is intended to ease the usage
of the Interactive Mode by offering shortcuts, e.g. for modifying drawing parameters,
redrawing events, loading the next/previous event or reseting the parameters.

2.1.4 Expanded Functionality

The cut functionality and Interactive Mode functions mentioned above were added to
the functionality found in the original CEDViewer. By using Python, an interpreted
language, the possibility to escape the modules main loop to the interpreter (Interactive
Mode) and modify and call functions during runtime was added.

2.2 Optimization

Among the modules provided by the Python Standard Library are the time and the
profile modules, allowing precise timing of the execution time of the entire pyced
module and individual parts thereof. The time module was used by storing timing
information at various points of the program and comparing these to each other. The
profile module was invoked by executing

python -m profile pyced.py [LCIO file]

It returns a list containing the number of times each function of the module was called
and various execution times; combined time and time per call, including and excluding
function calls from inside the function.

3 Usage

There are various levels of user involvement and customization with which the module
can be used. Basic Usage describes how to run the program and view events, Interme-
diate Usage explains how to enter the Interactive Mode and presents an overview of the
functions available in the current pyced version. Advanced Usage gives some examples
on how to modify not just the drawing parameters, but the module itself.

3.1 Basic Usage

The most basic usage is simply calling the module and viewing the events. This is
achieved by entering

python pyced.py [LCIO file]

in a console window. The events will be displayed one by one, drawing of the next
event is initiated by hitting <Enter>, execution is stopped by entering q.

For performance reasons it is advised to do simple viewing using the C++ version, since
compiled C++ code is almost always faster then interpreted Python code. In this case by
several seconds per event full event.

3.2 Intermediate Usage

To use the Interactive Mode of pyced it has to be launched with the -i option,
python -i pyced.py [LCIO filel

This allows users to access the Python interpreter when entering g, instead of exiting
Python. The interpreter is shut down by entering <Ctrl>-D.

When in Interactive Mode drawing parameters can be changed dynamically by using
the predefined functions listed in Table 1. Table 2 shows the available drawing options.
Use common sense when applying these, since not all options fit all collections.

Function

Description

redraw()
next ()

prev()

set(col, attr, val)

redrawWith

(col, attr, val)

reset(*maps)

enable(col)

disable(col)

picking()

Redraws the displayed event using the current settings.
Draws the next event using the current settings.

Loads the previous event. (Not yet functional)

Sets the chosen attribute of the collection to the entered
value. Collection and attribute have to be in quotation marks
(string literals). Possible values for col are a collection

name, collection type, “default”, and “all”.

Calls set () and redraws the event.

Resets the entered maps to the values defined in the config
file. Options are “all” and combinations of “nm?”,

“tm” and “dm”.

Enables the collection for drawing, options are the

same as for set ().

Excludes the collection from drawing to increase performance,
options are the same as for set ().

Re-enters the command loop to allow picking.

Table 1: Summary of the Interactive Mode Functions in pyced version 1.0.

Parameter Value Description

marker Int Sets the type of marker.

layer Int Sets the layer.

size Int Sets the size of the collection’s main data type.

hitsize Int Sets the size of the collection’s hits.

clustersize Int Sets the size of the collection’s clusters.

draw Bool En-/Disables the collection, for better performance.

cut Callable Sets the type and value of a cut. Predefined are
eCut(val, type), ptCut(val, type) and
cosThetaCut(val, type).
The optional type argument can be "greater " (than cut),
"smaller" (than cut) or a number
(range: cut < energy < cutType), default is "greater".

color Callable fixedColor('colorcode"), SimTrackerHitColor (), or
SimCalorimeterHitColor (). Only applies to Hit types

callDraw Callable Sets the function for drawing the collection, options

are drawHits, drawTracks, drawClusters, drawMCParticles,
and drawReconstructedParticle.

Table 2: Summary of the Drawing Parameters in pyced version 1.0.

Figure 2 demonstrates an energy cut at 0.0001 GeV of the SimCalorimeterHits of an
event, achieved by entering

set("SimCalorimeterHit", "cut", eCut(0.0001))

redraw ()

when in Interactive Mode.

(a) Before energy cut. (b) After energy cut.

Figure 2: Energy cut of the SimCalorimeterHits of an Event. The Event is shown in side-view
without perspective and all detector layers disabled.

3.3 Advanced Usage

Users familiar with Python can edit the module as well as the parameters. This can be
done either temporarily and on-the-fly during runtime, or permanently in the config file.
Additions which prove useful for a wide range of users may be directly implemented in
future versions of pyced.

To demonstrate how to add a function on the fly the example from Intermediate Usage
is extended by adding a shortcut for doing a p; cut and applying this to the MCParticle
collection. The code

enable ("MCParticle")
redrawWith ("SimCalorimeterHit", "cut"', eCut(0.01))

enables the previously disabled MCParticle collection and draws it while simultane-
ously increasing the energy threshold for the SimCalorimeterHits to 0.01 GeV (Figure 3).
The code

def makePtCut(collection, value)
set (collection, 'cut', ptCut(value))
3 redraw ()
makePtCut ("MCParticle", 1)

(a) Before cut and adding MCParticles. (b) After cut and adding MCParticles.

Figure 3: Increased energy threshold for the SimCalorimeterHits and added MCParticles.

adds a function for easily adding p; cuts and is called to apply one to the MCParticle
collection. This is shown in Figure 4.

(a) Before cut. (b) After cut.

Figure 4: Applying a p; cut to the MCParticle collection.

For advanced usage the pyced functions can be loaded into the interpreter or other
modules using

from pyced import =x*

This makes all functions from the module directly available and creates the instance
g of the PYCED class and adds all values from the config file to it. The attribute
g.fileName has to be manually set to the LCIO file to read. Then init () can be called
to load the necessary libraries, open the specified file and connect to CED.

4 Qutlook

Even though almost all functionality from the CEDViewer was ported to the Python
module there is still some work to be done. The functionality of the module could be
extended and the user-friendliness improved. The code needs further optimization as
well, to increase its usefulness by shortening the load time of events. Possibilities to
achieve this are pointed out below.

4.1 Further Development

A Python vector class should be developed to add full support of the TrackerHitPlane
collection type to pyced. This is the last remaining step to having ported all functionality
from CEDViewer.

The existing Interactive Mode functions can be extended by adding a setType func-
tion, which changes the parameters for all collections of a certain type. So far only the
type map is edited when applying changes to a collection, which has no effect if the same
setting exists in the name map. A similar option already exists for setting the attributes
of all collections.

An easy way to apply multiple cuts to the same collection should be added. This could
be achieved by adding another closure providing the option to set the “cut” attribute
to something like multiCut (eCut(0.0001), ptCut(1l)), taking an undefined number
of parameters.

Proper reading of GEAR files could be implemented, to allow e.g. spatially differing
B-Fields.

The amount and simplicity of the Interactive Mode functions can always be increased.

4.2 Optimization

Various general and Python-specific optimizations are still to be done.

Generally the amount of string comparisons should be minimized and as many if-
statements removed from loops as possible.

More specifically for Python it is much faster to use local variables than global ones.
Dots (for referencing attributes) should be avoided, which is done by e.g. defining
marker = col.marker. This is already done for all drawing functions. There are also
multiple looping techniques and data structures which should be examined.

Updating the code to Python 3 would further increase performance, but require all
machines running pyced to be updated as well.

The loading of the LCIO objects into Python and the look-up of their attributes seem
to require a substantial amount of the execution time and leave room for improvement.

To measure the performance of the code the modules time and profile have been
proven to be very handy.

References

[1] http://ilcsoft.desy.de/portal/software_packages/ced/
[2] http://ilcsoft.desy.de/portal/software_packages/lcio/
[3] http://ilcsoft.desy.de/portal/software_packages/cedviewer/

[4] http://ilcsoft.desy.de/portal/software_packages/gear/

http://ilcsoft.desy.de/portal/software_packages/ced/
http://ilcsoft.desy.de/portal/software_packages/lcio/
http://ilcsoft.desy.de/portal/software_packages/cedviewer/
http://ilcsoft.desy.de/portal/software_packages/gear/

	1 Introduction
	2 Development
	2.1 Porting CEDViewer to Python
	2.1.1 CEDViewer
	2.1.2 Python Bindings
	2.1.3 Python Implementation
	2.1.4 Expanded Functionality

	2.2 Optimization

	3 Usage
	3.1 Basic Usage
	3.2 Intermediate Usage
	3.3 Advanced Usage

	4 Outlook
	4.1 Further Development
	4.2 Optimization

